Set of models for classifcation of 3D volumes

Overview

Classification models 3D Zoo - Keras and TF.Keras

This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNets, VGG, etc. It also contains weights obtained by converting ImageNet weights from the same 2D models.

This repository is based on great classification_models repo by @qubvel

Architectures:

Installation

pip install classification-models-3D

Examples

Loading model with imagenet weights:
# for keras
from classification_models_3D.keras import Classifiers

# for tensorflow.keras
# from classification_models_3D.tfkeras import Classifiers

ResNet18, preprocess_input = Classifiers.get('resnet18')
model = ResNet18(input_shape=(128, 128, 128, 3), weights='imagenet')

All possible nets for Classifiers.get() method: 'resnet18, 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'seresnet18', 'seresnet34', 'seresnet50', 'seresnet101', 'seresnet152', 'seresnext50', 'seresnext101', 'senet154', 'resnext50', 'resnext101', 'vgg16', 'vgg19', 'densenet121', 'densenet169', 'densenet201', 'inceptionresnetv2', 'inceptionv3', 'mobilenet', 'mobilenetv2'

Convert imagenet weights (2D -> 3D)

Code to convert 2D imagenet weights to 3D variant is available here: convert_imagenet_weights_to_3D_models.py. Weights were obtained with TF2, but works OK with Keras + TF1 as well.

How to choose input shape

If initial 2D model had shape (512, 512, 3) then you can use shape (D, H, W, 3) where D * H * W ~= 512*512, so something like (64, 64, 64, 3) will be ok.

Training with single NVIDIA 1080Ti (11 GB) worked with:

  • DenseNet121, DenseNet169 and ResNet50 with shape (96, 128, 128, 3) and batch size 6
  • DenseNet201 with shape (96, 128, 128, 3) and batch size 5
  • ResNet18 with shape (128, 160, 160, 3) and batch size 6

Related repositories

Unresolved problems

  • There is no DepthwiseConv3D layer in keras, so repo used custom layer from this repo by @alexandrosstergiou which can be slower than native implementation.
  • There is no imagenet weights for 'inceptionresnetv2' and 'inceptionv3'.

Description

This code was used to get 1st place in DrivenData: Advance Alzheimer’s Research with Stall Catchers competition.

More details on ArXiv: https://arxiv.org/abs/2104.01687

Citation

If you find this code useful, please cite it as:

@InProceedings{RSolovyev_2021_stalled,
  author = {Solovyev, Roman and Kalinin, Alexandr A. and Gabruseva, Tatiana},
  title = {3D Convolutional Neural Networks for Stalled Brain Capillary Detection},
  booktitle = {Arxiv: 2104.01687},
  month = {April},
  year = {2021}
}
Comments
  • Update __init__.py

    Update __init__.py

    Using keras 2.9.0, import keras_applications as ka gives the following error:- ModuleNotFoundError: No module named 'keras_applications'

    Instead using from keras import applications as ka works!

    opened by msmuskan 0
  • Pushing current version to PyPI

    Pushing current version to PyPI

    Hello @ZFTurbo,

    if you have time, please push the current updated status (with ConvNeXt) of this repo to PyPI. :)

    Thanks again for the great work and your time!

    Cheers, Dominik

    opened by muellerdo 0
  • Grad cam issue

    Grad cam issue

    Hello ,

    base_model, preprocess_input = Classifiers.get('seresnext50') model = base_model(input_shape=(512, 512, 20, 1 ), weights=None , include_top = False ) x = Flatten()(model.output) x = Dense(1024, activation= 'sigmoid')(x) x = Dense(2, activation= 'sigmoid')(x)

    Trying to train a model , the accuracy is everything resides upto expectation, but the gradcam are quite off from the region of the focus - how the accuracy is good but the grad cam is off the focus of targeted area .

    Using the layer - 'activation-161' as output ref - https://github.com/fitushar/3D-Grad-CAM/blob/master/3DGrad-CAM.ipynb for the gradcam generation code , the results are always at the border of the image.

    opened by ntirupathirao18 0
  • ImportError: cannot import name 'VersionAwareLayers' from 'keras.layers'

    ImportError: cannot import name 'VersionAwareLayers' from 'keras.layers'

    Thank you for the great work.

    I am experiencing the following error over and over, even though I created a brand new tensorflow environment and installed all the necessary libraries in it. Could you please have a look on it and guide me how do I solve this problem? Thank you.

    ImportError: Unable to import 'VersionAwareLayers' from 'keras.layers' (/home/ubuntu/anaconda3/envs/cm_3d/lib/python3.7/site-packages/keras/layers/init.py)

    opened by nasir3843 2
  • 3D DenseNet

    3D DenseNet

    Hello and sorry to bother you beforehand,

    I am currently conducting my master thesis project and I am trying to implement a 3D DenseNet-121 with knee MRIs as input data. While I was searching on how to implement a 3D version of the DenseNet I came across your repository and tried to change it for my application.

    I have some issues regarding my try and I didn't know where else to ask about it and again I am sorry if I am completely of topic asking them here.

    Firstly, my input shapes are (250,320,18,1) and when I give them as input to the 3D DenseNet I developed with stride_size=1 for my Conv_block and pooling_size=(2,2,2) and strides=(2,2,1) for my AveragePooling3D layer in the transition block, the model is constructed properly with the specific input_size, while when I am trying to load a DenseNet121 from classification_models_3d.tfkeras classifiers I am unable to construct it with input_shape(250,320,18,1), stride_size=1 and kernel_size=2. It gives as an error "Negative dimension size... for node pool4_pool/AvgPool3D". Is there a way to specifically define the strides for AvgPool3D layer in the transition block?

    And secondly, I was thinking to load the 3D weights to my 3D DenseNet 121, is there a folder in your repository where I can find your pre-trained weights on imagenet??

    Again thank you for having this repository publicly available and sorry if I am completely of topic asking such things here.

    I look forward for you answer, Kind regards, Anastasis

    opened by alexopoulosanastasis 4
  • What are the limitations on Inceptionv3 input shape?

    What are the limitations on Inceptionv3 input shape?

    I seem to always get this error when I try to create InceptionV3 model no matter what input_shape. What are the limitations on input shape there?

    InvalidArgumentError: Negative dimension size caused by subtracting 3 from 2 for '{{node conv3d_314/Conv3D}} = 
    Conv3D[T=DT_FLOAT, data_format="NDHWC", dilations=[1, 1, 1, 1, 1], padding="VALID", strides=[1, 2, 2, 2, 1]](Placeholder, 
    conv3d_314/Conv3D/ReadVariableOp)' with input shapes: [?,2,17,17,192], [3,3,3,192,320].
    
    opened by mazatov 0
Releases(v1.0.4)
Deep Learning for Morphological Profiling

Deep Learning for Morphological Profiling An end-to-end implementation of a ML System for morphological profiling using self-supervised learning to di

Danielh Carranza 0 Jan 20, 2022
Entity-Based Knowledge Conflicts in Question Answering.

Entity-Based Knowledge Conflicts in Question Answering Run Instructions | Paper | Citation | License This repository provides the Substitution Framewo

Apple 35 Oct 19, 2022
Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment

Python implementation of MULTIseq barcode alignment using fuzzy string matching and GMM barcode assignment.

MT Schmitz 2 Feb 11, 2022
UI2I via StyleGAN2 - Unsupervised image-to-image translation method via pre-trained StyleGAN2 network

We proposed an unsupervised image-to-image translation method via pre-trained StyleGAN2 network. paper: Unsupervised Image-to-Image Translation via Pr

208 Dec 30, 2022
Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
Bag of Tricks for Natural Policy Gradient Reinforcement Learning

Bag of Tricks for Natural Policy Gradient Reinforcement Learning [ArXiv] Setup Python 3.8.0 pip install -r req.txt Mujoco 200 license Main Files main.

Brennan Gebotys 1 Oct 10, 2022
A PyTorch re-implementation of Neural Radiance Fields

nerf-pytorch A PyTorch re-implementation Project | Video | Paper NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis Ben Mildenhall

Krishna Murthy 709 Jan 09, 2023
Official implementation of "A Shared Representation for Photorealistic Driving Simulators" in PyTorch.

A Shared Representation for Photorealistic Driving Simulators The official code for the paper: "A Shared Representation for Photorealistic Driving Sim

VITA lab at EPFL 7 Oct 13, 2022
Adversarial Attacks on Probabilistic Autoregressive Forecasting Models.

Attack-Probabilistic-Models This is the source code for Adversarial Attacks on Probabilistic Autoregressive Forecasting Models. This repository contai

SRI Lab, ETH Zurich 25 Sep 14, 2022
A PyTorch implementation of QANet.

QANet-pytorch NOTICE I'm very busy these months. I'll return to this repo in about 10 days. Introduction An implementation of QANet with PyTorch. Any

H. Z. 343 Nov 03, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
A task Provided by A respective Artenal Ai and Ml based Company to complete it

A task Provided by A respective Alternal Ai and Ml based Company to complete it .

Parth Madan 1 Jan 25, 2022
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras

Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras which will then be used to generate residuals

Federico Lopez 2 Jan 14, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)

GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

859 Dec 26, 2022
Data augmentation for NLP, accepted at EMNLP 2021 Findings

AEDA: An Easier Data Augmentation Technique for Text Classification This is the code for the EMNLP 2021 paper AEDA: An Easier Data Augmentation Techni

Akbar Karimi 81 Dec 09, 2022
One line to host them all. Bootstrap your image search case in minutes.

One line to host them all. Bootstrap your image search case in minutes. Survey NOW gives the world access to customized neural image search in just on

Jina AI 403 Dec 30, 2022
PyTorch IPFS Dataset

PyTorch IPFS Dataset IPFSDataset(Dataset) See the jupyter notepad to see how it works and how it interacts with a standard pytorch DataLoader You need

Jake Kalstad 2 Apr 13, 2022