Set of models for classifcation of 3D volumes

Overview

Classification models 3D Zoo - Keras and TF.Keras

This repository contains 3D variants of popular CNN models for classification like ResNets, DenseNets, VGG, etc. It also contains weights obtained by converting ImageNet weights from the same 2D models.

This repository is based on great classification_models repo by @qubvel

Architectures:

Installation

pip install classification-models-3D

Examples

Loading model with imagenet weights:
# for keras
from classification_models_3D.keras import Classifiers

# for tensorflow.keras
# from classification_models_3D.tfkeras import Classifiers

ResNet18, preprocess_input = Classifiers.get('resnet18')
model = ResNet18(input_shape=(128, 128, 128, 3), weights='imagenet')

All possible nets for Classifiers.get() method: 'resnet18, 'resnet34', 'resnet50', 'resnet101', 'resnet152', 'seresnet18', 'seresnet34', 'seresnet50', 'seresnet101', 'seresnet152', 'seresnext50', 'seresnext101', 'senet154', 'resnext50', 'resnext101', 'vgg16', 'vgg19', 'densenet121', 'densenet169', 'densenet201', 'inceptionresnetv2', 'inceptionv3', 'mobilenet', 'mobilenetv2'

Convert imagenet weights (2D -> 3D)

Code to convert 2D imagenet weights to 3D variant is available here: convert_imagenet_weights_to_3D_models.py. Weights were obtained with TF2, but works OK with Keras + TF1 as well.

How to choose input shape

If initial 2D model had shape (512, 512, 3) then you can use shape (D, H, W, 3) where D * H * W ~= 512*512, so something like (64, 64, 64, 3) will be ok.

Training with single NVIDIA 1080Ti (11 GB) worked with:

  • DenseNet121, DenseNet169 and ResNet50 with shape (96, 128, 128, 3) and batch size 6
  • DenseNet201 with shape (96, 128, 128, 3) and batch size 5
  • ResNet18 with shape (128, 160, 160, 3) and batch size 6

Related repositories

Unresolved problems

  • There is no DepthwiseConv3D layer in keras, so repo used custom layer from this repo by @alexandrosstergiou which can be slower than native implementation.
  • There is no imagenet weights for 'inceptionresnetv2' and 'inceptionv3'.

Description

This code was used to get 1st place in DrivenData: Advance Alzheimer’s Research with Stall Catchers competition.

More details on ArXiv: https://arxiv.org/abs/2104.01687

Citation

If you find this code useful, please cite it as:

@InProceedings{RSolovyev_2021_stalled,
  author = {Solovyev, Roman and Kalinin, Alexandr A. and Gabruseva, Tatiana},
  title = {3D Convolutional Neural Networks for Stalled Brain Capillary Detection},
  booktitle = {Arxiv: 2104.01687},
  month = {April},
  year = {2021}
}
Comments
  • Update __init__.py

    Update __init__.py

    Using keras 2.9.0, import keras_applications as ka gives the following error:- ModuleNotFoundError: No module named 'keras_applications'

    Instead using from keras import applications as ka works!

    opened by msmuskan 0
  • Pushing current version to PyPI

    Pushing current version to PyPI

    Hello @ZFTurbo,

    if you have time, please push the current updated status (with ConvNeXt) of this repo to PyPI. :)

    Thanks again for the great work and your time!

    Cheers, Dominik

    opened by muellerdo 0
  • Grad cam issue

    Grad cam issue

    Hello ,

    base_model, preprocess_input = Classifiers.get('seresnext50') model = base_model(input_shape=(512, 512, 20, 1 ), weights=None , include_top = False ) x = Flatten()(model.output) x = Dense(1024, activation= 'sigmoid')(x) x = Dense(2, activation= 'sigmoid')(x)

    Trying to train a model , the accuracy is everything resides upto expectation, but the gradcam are quite off from the region of the focus - how the accuracy is good but the grad cam is off the focus of targeted area .

    Using the layer - 'activation-161' as output ref - https://github.com/fitushar/3D-Grad-CAM/blob/master/3DGrad-CAM.ipynb for the gradcam generation code , the results are always at the border of the image.

    opened by ntirupathirao18 0
  • ImportError: cannot import name 'VersionAwareLayers' from 'keras.layers'

    ImportError: cannot import name 'VersionAwareLayers' from 'keras.layers'

    Thank you for the great work.

    I am experiencing the following error over and over, even though I created a brand new tensorflow environment and installed all the necessary libraries in it. Could you please have a look on it and guide me how do I solve this problem? Thank you.

    ImportError: Unable to import 'VersionAwareLayers' from 'keras.layers' (/home/ubuntu/anaconda3/envs/cm_3d/lib/python3.7/site-packages/keras/layers/init.py)

    opened by nasir3843 2
  • 3D DenseNet

    3D DenseNet

    Hello and sorry to bother you beforehand,

    I am currently conducting my master thesis project and I am trying to implement a 3D DenseNet-121 with knee MRIs as input data. While I was searching on how to implement a 3D version of the DenseNet I came across your repository and tried to change it for my application.

    I have some issues regarding my try and I didn't know where else to ask about it and again I am sorry if I am completely of topic asking them here.

    Firstly, my input shapes are (250,320,18,1) and when I give them as input to the 3D DenseNet I developed with stride_size=1 for my Conv_block and pooling_size=(2,2,2) and strides=(2,2,1) for my AveragePooling3D layer in the transition block, the model is constructed properly with the specific input_size, while when I am trying to load a DenseNet121 from classification_models_3d.tfkeras classifiers I am unable to construct it with input_shape(250,320,18,1), stride_size=1 and kernel_size=2. It gives as an error "Negative dimension size... for node pool4_pool/AvgPool3D". Is there a way to specifically define the strides for AvgPool3D layer in the transition block?

    And secondly, I was thinking to load the 3D weights to my 3D DenseNet 121, is there a folder in your repository where I can find your pre-trained weights on imagenet??

    Again thank you for having this repository publicly available and sorry if I am completely of topic asking such things here.

    I look forward for you answer, Kind regards, Anastasis

    opened by alexopoulosanastasis 4
  • What are the limitations on Inceptionv3 input shape?

    What are the limitations on Inceptionv3 input shape?

    I seem to always get this error when I try to create InceptionV3 model no matter what input_shape. What are the limitations on input shape there?

    InvalidArgumentError: Negative dimension size caused by subtracting 3 from 2 for '{{node conv3d_314/Conv3D}} = 
    Conv3D[T=DT_FLOAT, data_format="NDHWC", dilations=[1, 1, 1, 1, 1], padding="VALID", strides=[1, 2, 2, 2, 1]](Placeholder, 
    conv3d_314/Conv3D/ReadVariableOp)' with input shapes: [?,2,17,17,192], [3,3,3,192,320].
    
    opened by mazatov 0
Releases(v1.0.4)
LQM - Improving Object Detection by Estimating Bounding Box Quality Accurately

Improving Object Detection by Estimating Bounding Box Quality Accurately Abstract Object detection aims to locate and classify object instances in ima

IM Lab., POSTECH 0 Sep 28, 2022
Image Restoration Using Swin Transformer for VapourSynth

SwinIR SwinIR function for VapourSynth, based on https://github.com/JingyunLiang/SwinIR. Dependencies NumPy PyTorch, preferably with CUDA. Note that t

Holy Wu 11 Jun 19, 2022
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
I tried to apply the CAM algorithm to YOLOv4 and it worked.

YOLOV4:You Only Look Once目标检测模型在pytorch当中的实现 2021年2月7日更新: 加入letterbox_image的选项,关闭letterbox_image后网络的map得到大幅度提升。 目录 性能情况 Performance 实现的内容 Achievement

55 Dec 05, 2022
Pytorch implementation of AREL

Status: Archive (code is provided as-is, no updates expected) Agent-Temporal Attention for Reward Redistribution in Episodic Multi-Agent Reinforcement

8 Nov 25, 2022
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021)

PDVC Official implementation for End-to-End Dense Video Captioning with Parallel Decoding (ICCV 2021) [paper] [valse论文速递(Chinese)] This repo supports:

Teng Wang 118 Dec 16, 2022
we propose a novel deep network, named feature aggregation and refinement network (FARNet), for the automatic detection of anatomical landmarks.

Feature Aggregation and Refinement Network for 2D Anatomical Landmark Detection Overview Localization of anatomical landmarks is essential for clinica

aoyueyuan 0 Aug 28, 2022
Style transfer, deep learning, feature transform

FastPhotoStyle License Copyright (C) 2018 NVIDIA Corporation. All rights reserved. Licensed under the CC BY-NC-SA 4.0 license (https://creativecommons

NVIDIA Corporation 10.9k Jan 02, 2023
Chinese clinical named entity recognition using pre-trained BERT model

Chinese clinical named entity recognition (CNER) using pre-trained BERT model Introduction Code for paper Chinese clinical named entity recognition wi

Xiangyang Li 109 Dec 14, 2022
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022
Convert Apple NeuralHash model for CSAM Detection to ONNX.

Apple NeuralHash is a perceptual hashing method for images based on neural networks. It can tolerate image resize and compression.

Asuhariet Ygvar 1.5k Dec 31, 2022
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
Code for MSc Quantitative Finance Dissertation

MSc Dissertation Code ReadMe Sector Volatility Prediction Performance Using GARCH Models and Artificial Neural Networks Curtis Nybo MSc Quantitative F

2 Dec 01, 2022
A Unified Generative Framework for Various NER Subtasks.

This is the code for ACL-ICJNLP2021 paper A Unified Generative Framework for Various NER Subtasks. Install the package in the requirements.txt, then u

177 Jan 05, 2023
Catbird is an open source paraphrase generation toolkit based on PyTorch.

Catbird is an open source paraphrase generation toolkit based on PyTorch. Quick Start Requirements and Installation The project is based on PyTorch 1.

Afonso Salgado de Sousa 5 Dec 15, 2022
This program can detect your face and add an Christams hat on the top of your head

Auto_Christmas This program can detect your face and add a Christmas hat to the top of your head. just run the Auto_Christmas.py, then you can see the

3 Dec 22, 2021
🌊 Online machine learning in Python

In a nutshell River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition

OnlineML 4k Jan 02, 2023