A python library to build Model Trees with Linear Models at the leaves.

Overview

linear-tree

A python library to build Model Trees with Linear Models at the leaves.

Overview

Linear Model Trees combine the learning ability of Decision Tree with the predictive and explicative power of Linear Models. Like in tree-based algorithms, the data are split according to simple decision rules. The goodness of slits is evaluated in gain terms fitting Linear Models in the nodes. This implies that the models in the leaves are linear instead of constant approximations like in classical Decision Trees.

linear-tree is developed to be fully integrable with scikit-learn. LinearTreeRegressor and LinearTreeClassifier are provided as scikit-learn BaseEstimator. They are wrappers that build a decision tree on the data fitting a linear estimator from sklearn.linear_model. All the models available in sklearn.linear_model can be used as linear estimators.

Installation

pip install linear-tree

The module depends on NumPy, SciPy and Scikit-Learn (>=0.23.0). Python 3.6 or above is supported.

Media

Usage

Regression
from sklearn.linear_model import LinearRegression
from lineartree import LinearTreeRegressor
from sklearn.datasets import make_regression
X, y = make_regression(n_samples=100, n_features=4,
                       n_informative=2, n_targets=1,
                       random_state=0, shuffle=False)
regr = LinearTreeRegressor(base_estimator=LinearRegression())
regr.fit(X, y)
Classification
from sklearn.linear_model import RidgeClassifier
from lineartree import LinearTreeClassifier
from sklearn.datasets import make_classification
X, y = make_classification(n_samples=100, n_features=4,
                           n_informative=2, n_redundant=0,
                           random_state=0, shuffle=False)
clf = LinearTreeClassifier(base_estimator=RidgeClassifier())
clf.fit(X, y)

More examples in the notebooks folder.

Check the API Reference to see the parameter configurations and the available methods.

Examples

Show the model tree structure:

plot tree

Linear Tree Regressor at work:

linear tree regressor

Linear Tree Classifier at work:

linear tree classifier

Extract and examine coefficients at the leaves:

leaf coefficients

Comments
  • finding breakpoint

    finding breakpoint

    Hello,

    thank you for your nice tool. I am using the function LinearTreeRegressor to draw a continuous piecewise linear. It works well, I am wondering, is it possible to show the location (the coordinates) of the breakpoints?

    thank you

    opened by ZhengLiu1119 5
  • Allow the hyperparameter

    Allow the hyperparameter "max_depth = 0".

    Thanks for the good library.

    When using LinearTreeRegressor, I think that max_depth is often optimized by cross-validation.

    This library allows max_depth in the range 1-20. However, depending on the dataset, simple linear regression may be suitable. Even in such a dataset, max_depth is forced to be 1 or more, so Simple Linear Regression cannot be applied properly with LinearTreeRegressor.

    • Of course, it is appropriate to use sklearn.linear_model.LinearRegression for such datasets.

    My suggestion is to change to a program that uses base_estimator to perform regression when "max_depth = 0". With this change, LinearTreeRegressor can flexibly respond to both segmented regression and simple regression by changing hyperparameters.

    opened by jckkvs 4
  • Error when running with multiple jobs: unexpected keyword argument 'target_offload'

    Error when running with multiple jobs: unexpected keyword argument 'target_offload'

    I have been using your library for quite a while and am super happy with it. So first, thanks a lot!

    Lately, I used my framework (which also uses your library) on modern many core server with many jobs. Worked fine. Now I have updated everything via pip and with 8 jobs on my MacBook, I got the following error.

    This error does not occur when using only a single job (I pass the number of jobs to n_jobs).

    I cannot nail the down the actual problem, but since it occurred right after the upgrade, I assume this might be the reason?

    Am I doing something wrong here?

    """
    Traceback (most recent call last):
      File "/Users/martin/opt/anaconda3/lib/python3.7/site-packages/joblib/externals/loky/process_executor.py", line 436, in _process_worker
        r = call_item()
      File "/Users/martin/opt/anaconda3/lib/python3.7/site-packages/joblib/externals/loky/process_executor.py", line 288, in __call__
        return self.fn(*self.args, **self.kwargs)
      File "/Users/martin/opt/anaconda3/lib/python3.7/site-packages/joblib/_parallel_backends.py", line 595, in __call__
        return self.func(*args, **kwargs)
      File "/Users/martin/opt/anaconda3/lib/python3.7/site-packages/joblib/parallel.py", line 263, in __call__
        for func, args, kwargs in self.items]
      File "/Users/martin/opt/anaconda3/lib/python3.7/site-packages/joblib/parallel.py", line 263, in <listcomp>
        for func, args, kwargs in self.items]
      File "/Users/martin/opt/anaconda3/lib/python3.7/site-packages/lineartree/_classes.py", line 56, in __call__
        with config_context(**self.config):
      File "/Users/martin/opt/anaconda3/lib/python3.7/contextlib.py", line 239, in helper
        return _GeneratorContextManager(func, args, kwds)
      File "/Users/martin/opt/anaconda3/lib/python3.7/contextlib.py", line 82, in __init__
        self.gen = func(*args, **kwds)
    TypeError: config_context() got an unexpected keyword argument 'target_offload'
    """
    
    The above exception was the direct cause of the following exception:
    
    Traceback (most recent call last):
      File "compression_selection_pipeline.py", line 41, in <module>
        model_pipeline.learn_runtime_models(calibration_result_dir)
      File "/Users/martin/Programming/compression_selection_v3/hyrise_calibration/model_pipeline.py", line 670, in learn_runtime_models
        non_splitting_models("table_scan", table_scans)
      File "/Users/martin/Programming/compression_selection_v3/hyrise_calibration/model_pipeline.py", line 590, in non_splitting_models
        fitted_model = model_dict["model"].fit(X_train, y_train)
      File "/Users/martin/Programming/compression_selection_v3/hyrise_calibration/model_pipeline.py", line 209, in fit
        return self.regression.fit(X, y)
      File "/Users/martin/opt/anaconda3/lib/python3.7/site-packages/lineartree/lineartree.py", line 187, in fit
        self._fit(X, y, sample_weight)
      File "/Users/martin/opt/anaconda3/lib/python3.7/site-packages/lineartree/_classes.py", line 576, in _fit
        self._grow(X, y, sample_weight)
      File "/Users/martin/opt/anaconda3/lib/python3.7/site-packages/lineartree/_classes.py", line 387, in _grow
        loss=loss)
      File "/Users/martin/opt/anaconda3/lib/python3.7/site-packages/lineartree/_classes.py", line 285, in _split
        for feat in split_feat)
      File "/Users/martin/opt/anaconda3/lib/python3.7/site-packages/joblib/parallel.py", line 1056, in __call__
        self.retrieve()
      File "/Users/martin/opt/anaconda3/lib/python3.7/site-packages/joblib/parallel.py", line 935, in retrieve
        self._output.extend(job.get(timeout=self.timeout))
      File "/Users/martin/opt/anaconda3/lib/python3.7/site-packages/joblib/_parallel_backends.py", line 542, in wrap_future_result
        return future.result(timeout=timeout)
      File "/Users/martin/opt/anaconda3/lib/python3.7/concurrent/futures/_base.py", line 435, in result
        return self.__get_result()
      File "/Users/martin/opt/anaconda3/lib/python3.7/concurrent/futures/_base.py", line 384, in __get_result
        raise self._exception
    TypeError: config_context() got an unexpected keyword argument 'target_offload'
    

    PS: I have already left a star. :D

    opened by Bouncner 3
  • Option to specify features to use for splitting and for leaf models

    Option to specify features to use for splitting and for leaf models

    Added two additional parameters:

    • split_features: Indices of features that can be used for splitting. Default all.
    • linear_features: Indices of features that are used by the linear models in the leaves. Default all except for categorical features

    This implements a feature requested in https://github.com/cerlymarco/linear-tree/issues/2

    Potential performance improvement: Currently the code still computes bins for all features and not only for those used for splitting.

    opened by JonasRauch 3
  • Rationale for rounding during _parallel_binning_fit and _grow

    Rationale for rounding during _parallel_binning_fit and _grow

    I noticed that the implementations of _parallel_binning_fit and _grow internally round loss values to 5 decimal places. This makes the regression results dependent on the scale of the labels, as data with a lower natural loss value will result in many different splits of the data having the same loss when rounded to 5 decimal places. Is there a reason why this is the case?

    This behavior can be observed by fitting a LinearTreeRegressor using the default loss function and multiplying the scale of the labels by a small number (like 1e-9). This will result in the regressor no longer learning any splits.

    opened by session-id 2
  • ValueError: Invalid parameter linearforestregression for estimator Pipeline

    ValueError: Invalid parameter linearforestregression for estimator Pipeline

    Great work! I'm new to ML and stuck with this. I'm trying to combine pipeline and GridSearch to search for best possible hyperparameters for a model.

    image

    I got the following error:

    image

    Kindly help : )

    opened by NousMei 2
  • Performance and possibility to split only on subset of features

    Performance and possibility to split only on subset of features

    Hey, I have been playing around a lot with your linear trees. Like them very much. Thanks!

    Nevertheless, I am somewhat disappointed by the runtime performance. Compared to XGBoost Regressors (I know it's not a fair comparison) or linear regressions (also not fair), the linear tree is reeeeeaally slow. 50k observations, 80 features: 2s for linear regression, 27s for XGBoost, and 300s for the linear tree. Have you seen similar runtimes or might I be using it wrong?

    Another aspects that's interesting to me is the question whether is possibe to limit the features which are used for splits. I haven't found it in the code. Any change to see it in the future?

    opened by Bouncner 2
  • export to graphviz  -AttributeError: 'LinearTreeRegressor' object has no attribute 'n_features_'

    export to graphviz -AttributeError: 'LinearTreeRegressor' object has no attribute 'n_features_'

    Hi

    thanks for writing this great package!

    I was trying to display the decision tree with graphviz I get this error

    AttributeError: 'LinearTreeRegressor' object has no attribute 'n_features_'

    from lineartree import LinearTreeRegressor from sklearn.linear_model import LinearRegression

    reg = LinearTreeRegressor(base_estimator=LinearRegression()) reg.fit(train[x_cols], train["y"])

    from graphviz import Source from sklearn import tree

    graph = Source( tree.export_graphviz(reg, out_file=None,feature_names=train.columns))

    opened by ricmarchao 2
  • numpy deprecation warning

    numpy deprecation warning

    /lineartree/_classes.py:338: DeprecationWarning:

    the interpolation= argument to quantile was renamed to method=, which has additional options. Users of the modes 'nearest', 'lower', 'higher', or 'midpoint' are encouraged to review the method they. (Deprecated NumPy 1.22)

    Seems like a quick update here would get this warning to stop showing up, right? I can always ignore it, but figured I would mention it in case it is actually an error on my side.

    Also, sorry, I don't actually what the best open source etiquette is. If I'm supposed to create a pull request with a proposed fix instead of just mentioning it then feel free to correct me.

    opened by paul-brenner 1
  • How to gridsearch tree and regression parameters?

    How to gridsearch tree and regression parameters?

    Hi, I am wondering how to perform a GridsearchCV to find best parameters for the tree and regression model? For now I am able to tune the tree component of my model:

    `

     param_grid={
        'n_estimators': [50, 100, 500, 700],
        'max_depth': [10, 20, 30, 50],
        'min_samples_split' : [2, 4, 8, 16, 32],
        'max_features' : ['sqrt', 'log2', None]
    }
    cv = RepeatedKFold(n_repeats=3,
                       n_splits=3,
                       random_state=1)
    
    model = GridSearchCV(
        LinearForestRegressor(ElasticNet(random_state = 0), random_state=42),
        param_grid=param_grid,
        n_jobs=-1,
        cv=cv,
        scoring='neg_root_mean_squared_error'
        )
    

    `

    opened by zuzannakarwowska 1
  • Potential bug in LinearForestClassifier 'predict_proba'

    Potential bug in LinearForestClassifier 'predict_proba'

    Hello! Thank you for useful package!

    I think I might have found a potential bug in LinearForestClassifier.

    I expected 'predict_proba' to use 'self.decision_function', similarly to 'predict' - to include predictions from both estimators (base + forest). Is that a potential bug or am I in wrong here?

    https://github.com/cerlymarco/linear-tree/blob/8d5beca8d492cb8c57e6618e3fb770860f28b550/lineartree/lineartree.py#L1560

    opened by PiotrKaszuba 1
Releases(0.3.5)
Owner
Marco Cerliani
Statistician Hacker & Data Scientist
Marco Cerliani
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
Pixel-Perfect Structure-from-Motion with Featuremetric Refinement (ICCV 2021, Oral)

Pixel-Perfect Structure-from-Motion (ICCV 2021 Oral) We introduce a framework that improves the accuracy of Structure-from-Motion by refining keypoint

Computer Vision and Geometry Lab 831 Dec 29, 2022
A framework for the elicitation, specification, formalization and understanding of requirements.

A framework for the elicitation, specification, formalization and understanding of requirements.

NASA - Software V&V 161 Jan 03, 2023
This repository contains the code for the paper 'PARM: Paragraph Aggregation Retrieval Model for Dense Document-to-Document Retrieval' published at ECIR'22.

Paragraph Aggregation Retrieval Model (PARM) for Dense Document-to-Document Retrieval This repository contains the code for the paper PARM: A Paragrap

Sophia Althammer 33 Aug 26, 2022
Metrics to evaluate quality and efficacy of synthetic datasets.

An Open Source Project from the Data to AI Lab, at MIT Metrics for Synthetic Data Generation Projects Website: https://sdv.dev Documentation: https://

The Synthetic Data Vault Project 129 Jan 03, 2023
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
natural image generation using ConvNets

The Eyescream Project Generating Natural Images using Neural Networks. For our research summary on this work, please read the Arxiv paper: http://arxi

Meta Archive 601 Nov 23, 2022
Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods”

Uncertainty Estimation Methods Code for the paper “The Peril of Popular Deep Learning Uncertainty Estimation Methods” Reference If you use this code,

EPFL Machine Learning and Optimization Laboratory 4 Apr 05, 2022
This is the pytorch implementation of the paper - Axiomatic Attribution for Deep Networks.

Integrated Gradients This is the pytorch implementation of "Axiomatic Attribution for Deep Networks". The original tensorflow version could be found h

Tianhong Dai 150 Dec 23, 2022
SAN for Product Attributes Prediction

SAN Heterogeneous Star Graph Attention Network for Product Attributes Prediction This repository contains the official PyTorch implementation for ADVI

Xuejiao Zhao 9 Dec 12, 2022
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022) This repository provides the official PyTorch impleme

Billy XU 128 Jan 03, 2023
[CVPR 2021] MiVOS - Mask Propagation module. Reproduced STM (and better) with training code :star2:. Semi-supervised video object segmentation evaluation.

MiVOS (CVPR 2021) - Mask Propagation Ho Kei Cheng, Yu-Wing Tai, Chi-Keung Tang [arXiv] [Paper PDF] [Project Page] [Papers with Code] This repo impleme

Rex Cheng 106 Jan 03, 2023
a simple, efficient, and intuitive text editor

Oxygen beta a simple, efficient, and intuitive text editor Overview oxygen is a simple, efficient, and intuitive text editor designed as more featured

Aarush Gupta 1 Feb 23, 2022
Pytorch implementation of the AAAI 2022 paper "Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification"

[AAAI22] Cross-Domain Empirical Risk Minimization for Unbiased Long-tailed Classification We point out the overlooked unbiasedness in long-tailed clas

PatatiPatata 28 Oct 18, 2022
Code for paper " AdderNet: Do We Really Need Multiplications in Deep Learning?"

AdderNet: Do We Really Need Multiplications in Deep Learning? This code is a demo of CVPR 2020 paper AdderNet: Do We Really Need Multiplications in De

HUAWEI Noah's Ark Lab 915 Jan 01, 2023