Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Related tags

Deep LearningReNode
Overview

Topology-Imbalance Learning for Semi-Supervised Node Classification

Introduction

Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Supervised Node Classification"

Overview Figure This work investigates the topology-imbalance problem of node representation learning on graph-structured data. Unlike the "quantity-imbalance" problem, the topology imbalance is caused by the topological properties of the labeled nodes, i.e., the locations of the labeled nodes on the graph can influence how information is spread over the entire graph.

The conflict-detection based metric Totoro is proposed for measuring the degree of topology imbalance. Moreover, the ReNode method is proposed to relieve the topology imbalance issue for both transductive setting and inductive setting.

Transductive Setting

a) Introduction

The code for the transductive setting semi-supervised learning. Including the CORA/CiteSeer/PubMed/Photo/Computers experiment datasets as shown in paper. It is implemented mainly based on pytorch_geometric project: https://github.com/rusty1s/pytorch_geometric

b) Quick Start

  • Prepare conda enviroment; more package info can be found in "requirements.txt"
  • Set the operations in 'opt.py'; some important operations are listed:
    1. Experiment Dataset (the dataset will be downloaded automatically at the first running time): set data_name = ['cora','citeseer','pubmed','photo','computers']
    2. Backbone GNN':
      set model = ['sgc','ppnp','gcn','gat','sage','cheb']
    3. Training Loss:
      set loss-name = ['ce','focal','re-weight','cb-softmax']
    4. ReNode Method:
      set renode-reweight = 1/0 to open/close ReNode
      set rn-base-weight as the lowerbound of the ReNode Factor
      set rn-scale-weight as the scale range of the ReNode Factor
    5. Imbalance Issue:
      set size-imb-type = 'none' if study TINL-only
      set size-imb-type = 'step' if study TINL&QINL
  • Running command: 'python transductive_run.py'

Inductive Setting

a) Introduction

The code for the inductive setting semi-supervised learning. Including the Reddit and MAG-Scholar datasets. It is branched from the PPRGo project: https://github.com/TUM-DAML/pprgo_pytorch.

b) Quick Start

  • Prepare conda enviroment; more package info can be found in "requirements.txt"

  • Prepare the dataset file from the following public source:

    1. Reddit: https://github.com/TUM-DAML/pprgo_pytorch/blob/master/data/get_reddit.md
    2. MAG-Scholar: https://figshare.com/articles/dataset/mag_scholar/12696653/2
  • Set the operations in 'config.yaml'; some important operations are listed:

    1. ReNode Method:
      for baseline: set base_w = 1 and scale_w = 0
      for method: set base_w and scale_w
    2. Training Size:
      set ntrain_div_classes
    3. Imbalance Issue:
      set issue_type = 'tinl' if considering topology imbalance only
      set issue_type = 'qinl' if jointly considering topology- and quantity-imbalance
  • Running command: 'python inductive_run.py'

License

MIT License

Contact

Please feel free to email me (chendeli96 [AT] gmail.com) for any questions about this work.

Citation

@inproceedings{chen2021renode,
  author    = {Deli, Chen and Yankai, Lin and Guangxiang, Zhao and Xuancheng, Ren and Peng, Li and Jie, Zhou and Xu, Sun},
  title     = {{Topology-Imbalance Learning for Semi-Supervised Node Classification}},
  booktitle = {NeurIPS},
  year      = {2021}
}
Owner
Victor Chen
Victor Chen
Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra

850-Safra-DS-ModuloI Repositório para arquivos sobre o Módulo 1 do curso Top Coders da Let's Code + Safra Para aprender mais Git https://learngitbranc

Brian Nunes 7 Dec 10, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

Time2box Implementation of [Time in a Box: Advancing Knowledge Graph Completion with Temporal Scopes].

LingCai 4 Aug 23, 2022
시각 장애인을 위한 스마트 지팡이에 활용될 딥러닝 모델 (DL Model Repo)

SmartCane-DL-Model Smart Cane using semantic segmentation 참고한 Github repositoy 🔗 https://github.com/JunHyeok96/Road-Segmentation.git 데이터셋 🔗 https://

반드시 졸업한다 (Team Just Graduate) 4 Dec 03, 2021
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
LBK 26 Dec 28, 2022
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
Pytorch implementation of the paper SPICE: Semantic Pseudo-labeling for Image Clustering

SPICE: Semantic Pseudo-labeling for Image Clustering By Chuang Niu and Ge Wang This is a Pytorch implementation of the paper. (In updating) SOTA on 5

Chuang Niu 154 Dec 15, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
Node Editor Plug for Blender

NodeEditor Blender的程序化建模插件 Show Current 基本框架:自定义的tree-node-socket、tree中的node与socket采用字典查询、基于socket入度的拓扑排序 数据传递和处理依靠Tree中的字典,socket传递字典key TODO 增加更多的节点

Cuimi 11 Dec 03, 2022
Aggragrating Nested Transformer Official Jax Implementation

NesT is a simple method, which aggragrates nested local transformers on image blocks. The idea makes vision transformers attain better accuracy, data efficiency, and convergence on the ImageNet bench

Google Research 169 Dec 20, 2022
Deep Structured Instance Graph for Distilling Object Detectors (ICCV 2021)

DSIG Deep Structured Instance Graph for Distilling Object Detectors Authors: Yixin Chen, Pengguang Chen, Shu Liu, Liwei Wang, Jiaya Jia. [pdf] [slide]

DV Lab 31 Nov 17, 2022
Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals"

The Temporal Robustness of Stochastic Signals Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals" Case stud

0 Oct 28, 2021
Pocsploit is a lightweight, flexible and novel open source poc verification framework

Pocsploit is a lightweight, flexible and novel open source poc verification framework

cckuailong 208 Dec 24, 2022
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download

155 Dec 20, 2022
DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection

DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection Code for our Paper DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Obje

Steven Lang 58 Dec 19, 2022