Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Related tags

Deep Learningqdtrack
Overview

Quasi-Dense Tracking

This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking.

We present a trailer that consists of method illustrations and tracking visualizations. Take a look!

If you have any questions, please go to Discussions.

Abstract

Similarity learning has been recognized as a crucial step for object tracking. However, existing multiple object tracking methods only use sparse ground truth matching as the training objective, while ignoring the majority of the informative regions on the images. In this paper, we present Quasi-Dense Similarity Learning, which densely samples hundreds of region proposals on a pair of images for contrastive learning. We can naturally combine this similarity learning with existing detection methods to build Quasi-Dense Tracking (QDTrack) without turning to displacement regression or motion priors. We also find that the resulting distinctive feature space admits a simple nearest neighbor search at the inference time. Despite its simplicity, QDTrack outperforms all existing methods on MOT, BDD100K, Waymo, and TAO tracking benchmarks. It achieves 68.7 MOTA at 20.3 FPS on MOT17 without using external training data. Compared to methods with similar detectors, it boosts almost 10 points of MOTA and significantly decreases the number of ID switches on BDD100K and Waymo datasets.

Quasi-dense matching

Main results

Without bells and whistles, our method outperforms the states of the art on MOT, BDD100K, Waymo, and TAO benchmarks.

BDD100K test set

mMOTA mIDF1 ID Sw.
35.5 52.3 10790

MOT

Dataset MOTA IDF1 ID Sw. MT ML
MOT16 69.8 67.1 1097 316 150
MOT17 68.7 66.3 3378 957 516

Waymo validation set

Category MOTA IDF1 ID Sw.
Vehicle 55.6 66.2 24309
Pedestrian 50.3 58.4 6347
Cyclist 26.2 45.7 56
All 44.0 56.8 30712

TAO

Split AP50 AP75 AP
val 16.1 5.0 7.0
test 12.4 4.5 5.2

Installation

Please refer to INSTALL.md for installation instructions.

Usages

Please refer to GET_STARTED.md for dataset preparation and running instructions.

We release pretrained models on BDD100K dataset for testing.

More implementations / models on the following benchmarks will be released later:

  • Waymo
  • MOT16 / MOT17 / MOT20
  • TAO

Citation

@InProceedings{qdtrack,
  title = {Quasi-Dense Similarity Learning for Multiple Object Tracking},
  author = {Pang, Jiangmiao and Qiu, Linlu and Li, Xia and Chen, Haofeng and Li, Qi and Darrell, Trevor and Yu, Fisher},
  booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  month = {June},
  year = {2021}
}
Comments
  • TypeError : Resnet : __init__() got an unexpected keyword argument 'init_cfg'

    TypeError : Resnet : __init__() got an unexpected keyword argument 'init_cfg'

    Greetings,

    I am currently using qdtrack in python 3.8, Cuda 11 based environment for RTX 3090 GPU. While training as well as testing, I am getting this error. All required datasets in required locations have been downloaded and maintained. Any help would be appreciated.

    opened by AmanGoyal99 12
  • Inconsistent Results on BDD100K Tracking Validation Set

    Inconsistent Results on BDD100K Tracking Validation Set

    Hi there.

    I ran the pre-trained BDD100K model on the tracking validation set and the resulting MOTA IDF1 scores are lower than what QDTrack claim: MOTA: 54.5, IDF1: 66.7 vs your MOTA: 63.5, IDF1 71.5.

    Kindly verify if this is the case for you or if there are any missing settings.

    I followed the instructions and ran this command: sh ./tools/dist_test.sh ./configs/bdd100k/qdtrack-frcnn_r50_fpn_12e_bdd100k.py ./ckpts/mmdet/qdtrack_frcnn_r50_fpn_12e_bdd100k_13328aed.pth 2 --out exp.pkl --eval track

    opened by taheranjary 8
  • Evaluation results on TAO-val

    Evaluation results on TAO-val

    Hello,

    When I train the model with your code for TAO (i.e., pretrain on LVIS and finetune on TAO-train), I get the following final results on TAO-val. which are lower than the scores reported in the original paper.

    |mAP0.5 | mAP0.75 | mAP[0.5:0.95] | |---------|---------|---------| |13.8 | 5.5 | 6.5 | | 16.1 | 5.0 | 7.0 |

    • above : reproduced // below : original

    Are there any issues that I have to consider for getting the original score?

    Thanks,

    opened by shwoo93 8
  • Training loss/Acc diagram

    Training loss/Acc diagram

    Thanks for the great work!

    I am trying to retrain QDTrack on BDD100k, however, it is converging really slowly (at least for the first epochs). Therefore I wanted to ask, whether it is possible to share your diagrams on training loss and acc?

    Thanks in advance!

    opened by LisaBernhardt 7
  • Unclear which links to pick from BDD website for dataset prep

    Unclear which links to pick from BDD website for dataset prep

    The Readme indicates Detection and Tracking sets, but the site shows 11 options, including: Images, MOT 2020 Labels, MOT 2020 Data, Detection 2020 Labels.

    Also, clicking MOT 2020 Data shows many different options. Should they all be downloaded?

    opened by diesendruck 7
  • about train

    about train

    when I train the net,Epoch 1 ,200/171305 ,the result as follow: lr: 7.992e-03,loss_rpn_cls: nan, loss_rpn_bbox: nan, loss_cls: nan, acc: 81.8194, loss_bbox: nan, loss_track: nan, loss_track_aux: nan, loss: nan why?

    opened by ningqing123 6
  • Is customization of backbone possible as mentioned in the mmdet library ?

    Is customization of backbone possible as mentioned in the mmdet library ?

    Kindly let me know if customization of backbone as mentioned in mmdet library could be used with qdtrack as well ?

    LInk : https://github.com/open-mmlab/mmdetection/blob/master/docs/tutorials/customize_models.md#add-a-new-backbone

    opened by AmanGoyal99 5
  • Your BDD100K instructions are unclear

    Your BDD100K instructions are unclear

    This is what you are saying:

    
    On the official download page, the required data and annotations are
    
    detection set images: Images
    detection set annotations: Detection 2020 Labels
    tracking set images: MOT 2020 Data
    tracking set annotations: MOT 2020 Labels
    

    But there is no Images or MOT 2020 Data on the official website for BDD

    opened by ghost 5
  • I'm confusing with the meaning of auxiliary loss

    I'm confusing with the meaning of auxiliary loss

    Hi , thanks for your great work. According to the paper, There is an auliliary loss, I do not really understand the intuition of this loss. 螢幕擷取畫面 (9)

    Can you give me some more explanation of this loss? Thanks.

    opened by hcv1027 4
  • RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!

    RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cpu!

    Thank you for your paper and this repo! I would like to test your pretrained model on the BDD100k dataset. Therefore I followed the instructions (https://github.com/SysCV/qdtrack/blob/master/docs/GET_STARTED.md) - downloaded BDD100k, converted annotations as described and stored everything as your folder structure suggests.

    I used 'single-gpu testing' in the chapter 'Test a Model' and executed the following command in the terminal: python tools/test.py ${QDTrack}/configs/qdtrack-frcnn_r50_fpn_12e_bdd100k.py ${QDTrack}/pretrained_models/qdtrack-frcnn_r50_fpn_12e_bdd100k-13328aed.pth --out testrun_01.pkl --eval track --show-dir ${QDTrack}/data/results

    ${QDTrack} = indicates the path on my machine to qdtrack

    I get the following error: image

    Could you please help me solving this issue. Thanks a lot!

    opened by LisaBernhardt 4
  • about MOT17: loss_track degrades to zero after 50 iterations

    about MOT17: loss_track degrades to zero after 50 iterations

    Thanks for your great work! I'm now trying to run qdtrack on MOT17. I find the detection part went well during training and reached a reasonable mAP score. But, the loss of the quasi-dense embedding part degraded fastly to zero within 100 iterations, and obtained very low MOTA, MOTP, IDF1, etc., after training. Note that I modified nothing except the code related to dataset, which I've checked carefully thus I believe is not the reason. Should I modify the settings of quasi-dense embedding head to make it work? Do you have any suggestions? Thank you very much!

    opened by wswdx 4
  • detector freeze problem

    detector freeze problem

    Hi.

    I'm going to freeze the parameters of detector as you say(https://github.com/SysCV/qdtrack/issues/126).

    In qdtrack/models/mot/qdtrack.py, I tried to freeze the detector using freeze_detector(freeze_detector = True). But, when freeze_detector = True, self.detector, I got this error.

    Traceback (most recent call last): File "tools/train.py", line 169, in main() File "tools/train.py", line 140, in main test_cfg=cfg.get('test_cfg')) File "/workspace/qdtrack/qdtrack/models/builder.py", line 15, in build_model return build(cfg, MODELS, dict(train_cfg=train_cfg, test_cfg=test_cfg)) File "/workspace/mmcv/mmcv/cnn/builder.py", line 27, in build_model_from_cfg return build_from_cfg(cfg, registry, default_args) File "/workspace/mmcv/mmcv/utils/registry.py", line 72, in build_from_cfg raise type(e)(f'{obj_cls.name}: {e}') AttributeError: QDTrack: 'QDTrack' object has no attribute 'backbone'

    image

    Here is the config file I used. image

    I think, image be caused by self.detector.

    How can I put the backbone and neck, rpn_head, roi_head.bbox_head of the detector config file(/configs/base/faster_rcnn_r50_fpn.py) in self.detector?

    Thank you.

    opened by YOOHYOJEONG 1
  • Can I train only tracker?

    Can I train only tracker?

    Hi.

    I trained the detector using mmcv. And, I want to use the detector checkpoint trained using mmcv for the detector of qdtrack without any additional detector learning. In this case, Can I train only tracker of qdtrack?

    If I enter trained checkpoint using mmcv in init_cfg=dict(checkpoint='') in detecotr, is it the same as training only the tracker I mentioned?

    Thank you.

    opened by YOOHYOJEONG 2
  • The model and loaded state dict do not match exactly

    The model and loaded state dict do not match exactly

    Hi,

    Thanks for open-sourcing the code of your great work! Looks like there are some bugs when running the current tools/inference.py.

    When using the configs/bdd100k/qdtrack-frcnn_r50_fpn_12e_bdd100k.py as config and qdtrack-frcnn_r50_fpn_12e_bdd100k-13328aed.pth as the checkpoint (from the google drive link provided in the README file), the model and loaded state dict do not match exactly. Looks like you updated the name of layers but didn't update the definition of the pre-trained model. Manually changing the layer names in the .pth file will work.

    The model and loaded state dict do not match exactly
    
    unexpected key in source state_dict: backbone.conv1.weight, backbone.bn1.weight, backbone.bn1.bias, backbone.bn1.running_mean, backbone.bn1.running_var, backbone.bn1.num_batches_tracked, backbone.layer1.0.conv1.weight, backbone.layer1.0.bn1.weight, backbone.layer1.0.bn1.bias, backbone.layer1.0.bn1.running_mean, backbone.layer1.0.bn1.running_var, backbone.layer1.0.bn1.num_batches_tracked, backbone.layer1.0.conv2.weight, backbone.layer1.0.bn2.weight, backbone.layer1.0.bn2.bias, backbone.layer1.0.bn2.running_mean, backbone.layer1.0.bn2.running_var, backbone.layer1.0.bn2.num_batches_tracked, backbone.layer1.0.conv3.weight, backbone.layer1.0.bn3.weight, backbone.layer1.0.bn3.bias, backbone.layer1.0.bn3.running_mean, backbone.layer1.0.bn3.running_var, backbone.layer1.0.bn3.num_batches_tracked, backbone.layer1.0.downsample.0.weight, backbone.layer1.0.downsample.1.weight, backbone.layer1.0.downsample.1.bias, backbone.layer1.0.downsample.1.running_mean, backbone.layer1.0.downsample.1.running_var, backbone.layer1.0.downsample.1.num_batches_tracked, backbone.layer1.1.conv1.weight, backbone.layer1.1.bn1.weight, backbone.layer1.1.bn1.bias, backbone.layer1.1.bn1.running_mean, backbone.layer1.1.bn1.running_var, backbone.layer1.1.bn1.num_batches_tracked, backbone.layer1.1.conv2.weight, backbone.layer1.1.bn2.weight, backbone.layer1.1.bn2.bias, backbone.layer1.1.bn2.running_mean, backbone.layer1.1.bn2.running_var, backbone.layer1.1.bn2.num_batches_tracked, backbone.layer1.1.conv3.weight, backbone.layer1.1.bn3.weight, backbone.layer1.1.bn3.bias, backbone.layer1.1.bn3.running_mean, backbone.layer1.1.bn3.running_var, backbone.layer1.1.bn3.num_batches_tracked, backbone.layer1.2.conv1.weight, backbone.layer1.2.bn1.weight, backbone.layer1.2.bn1.bias, backbone.layer1.2.bn1.running_mean, backbone.layer1.2.bn1.running_var, backbone.layer1.2.bn1.num_batches_tracked, backbone.layer1.2.conv2.weight, backbone.layer1.2.bn2.weight, backbone.layer1.2.bn2.bias, backbone.layer1.2.bn2.running_mean, backbone.layer1.2.bn2.running_var, backbone.layer1.2.bn2.num_batches_tracked, backbone.layer1.2.conv3.weight, backbone.layer1.2.bn3.weight, backbone.layer1.2.bn3.bias, backbone.layer1.2.bn3.running_mean, backbone.layer1.2.bn3.running_var, backbone.layer1.2.bn3.num_batches_tracked, backbone.layer2.0.conv1.weight, backbone.layer2.0.bn1.weight, backbone.layer2.0.bn1.bias, backbone.layer2.0.bn1.running_mean, backbone.layer2.0.bn1.running_var, backbone.layer2.0.bn1.num_batches_tracked, backbone.layer2.0.conv2.weight, backbone.layer2.0.bn2.weight, backbone.layer2.0.bn2.bias, backbone.layer2.0.bn2.running_mean, backbone.layer2.0.bn2.running_var, backbone.layer2.0.bn2.num_batches_tracked, backbone.layer2.0.conv3.weight, backbone.layer2.0.bn3.weight, backbone.layer2.0.bn3.bias, backbone.layer2.0.bn3.running_mean, backbone.layer2.0.bn3.running_var, backbone.layer2.0.bn3.num_batches_tracked, backbone.layer2.0.downsample.0.weight, backbone.layer2.0.downsample.1.weight, backbone.layer2.0.downsample.1.bias, backbone.layer2.0.downsample.1.running_mean, backbone.layer2.0.downsample.1.running_var, backbone.layer2.0.downsample.1.num_batches_tracked, backbone.layer2.1.conv1.weight, backbone.layer2.1.bn1.weight, backbone.layer2.1.bn1.bias, backbone.layer2.1.bn1.running_mean, backbone.layer2.1.bn1.running_var, backbone.layer2.1.bn1.num_batches_tracked, backbone.layer2.1.conv2.weight, backbone.layer2.1.bn2.weight, backbone.layer2.1.bn2.bias, backbone.layer2.1.bn2.running_mean, backbone.layer2.1.bn2.running_var, backbone.layer2.1.bn2.num_batches_tracked, backbone.layer2.1.conv3.weight, backbone.layer2.1.bn3.weight, backbone.layer2.1.bn3.bias, backbone.layer2.1.bn3.running_mean, backbone.layer2.1.bn3.running_var, backbone.layer2.1.bn3.num_batches_tracked, backbone.layer2.2.conv1.weight, backbone.layer2.2.bn1.weight, backbone.layer2.2.bn1.bias, backbone.layer2.2.bn1.running_mean, backbone.layer2.2.bn1.running_var, backbone.layer2.2.bn1.num_batches_tracked, backbone.layer2.2.conv2.weight, backbone.layer2.2.bn2.weight, backbone.layer2.2.bn2.bias, backbone.layer2.2.bn2.running_mean, backbone.layer2.2.bn2.running_var, backbone.layer2.2.bn2.num_batches_tracked, backbone.layer2.2.conv3.weight, backbone.layer2.2.bn3.weight, backbone.layer2.2.bn3.bias, backbone.layer2.2.bn3.running_mean, backbone.layer2.2.bn3.running_var, backbone.layer2.2.bn3.num_batches_tracked, backbone.layer2.3.conv1.weight, backbone.layer2.3.bn1.weight, backbone.layer2.3.bn1.bias, backbone.layer2.3.bn1.running_mean, backbone.layer2.3.bn1.running_var, backbone.layer2.3.bn1.num_batches_tracked, backbone.layer2.3.conv2.weight, backbone.layer2.3.bn2.weight, backbone.layer2.3.bn2.bias, backbone.layer2.3.bn2.running_mean, backbone.layer2.3.bn2.running_var, backbone.layer2.3.bn2.num_batches_tracked, backbone.layer2.3.conv3.weight, backbone.layer2.3.bn3.weight, backbone.layer2.3.bn3.bias, backbone.layer2.3.bn3.running_mean, backbone.layer2.3.bn3.running_var, backbone.layer2.3.bn3.num_batches_tracked, backbone.layer3.0.conv1.weight, backbone.layer3.0.bn1.weight, backbone.layer3.0.bn1.bias, backbone.layer3.0.bn1.running_mean, backbone.layer3.0.bn1.running_var, backbone.layer3.0.bn1.num_batches_tracked, backbone.layer3.0.conv2.weight, backbone.layer3.0.bn2.weight, backbone.layer3.0.bn2.bias, backbone.layer3.0.bn2.running_mean, backbone.layer3.0.bn2.running_var, backbone.layer3.0.bn2.num_batches_tracked, backbone.layer3.0.conv3.weight, backbone.layer3.0.bn3.weight, backbone.layer3.0.bn3.bias, backbone.layer3.0.bn3.running_mean, backbone.layer3.0.bn3.running_var, backbone.layer3.0.bn3.num_batches_tracked, backbone.layer3.0.downsample.0.weight, backbone.layer3.0.downsample.1.weight, backbone.layer3.0.downsample.1.bias, backbone.layer3.0.downsample.1.running_mean, backbone.layer3.0.downsample.1.running_var, backbone.layer3.0.downsample.1.num_batches_tracked, backbone.layer3.1.conv1.weight, backbone.layer3.1.bn1.weight, backbone.layer3.1.bn1.bias, backbone.layer3.1.bn1.running_mean, backbone.layer3.1.bn1.running_var, backbone.layer3.1.bn1.num_batches_tracked, backbone.layer3.1.conv2.weight, backbone.layer3.1.bn2.weight, backbone.layer3.1.bn2.bias, backbone.layer3.1.bn2.running_mean, backbone.layer3.1.bn2.running_var, backbone.layer3.1.bn2.num_batches_tracked, backbone.layer3.1.conv3.weight, backbone.layer3.1.bn3.weight, backbone.layer3.1.bn3.bias, backbone.layer3.1.bn3.running_mean, backbone.layer3.1.bn3.running_var, backbone.layer3.1.bn3.num_batches_tracked, backbone.layer3.2.conv1.weight, backbone.layer3.2.bn1.weight, backbone.layer3.2.bn1.bias, backbone.layer3.2.bn1.running_mean, backbone.layer3.2.bn1.running_var, backbone.layer3.2.bn1.num_batches_tracked, backbone.layer3.2.conv2.weight, backbone.layer3.2.bn2.weight, backbone.layer3.2.bn2.bias, backbone.layer3.2.bn2.running_mean, backbone.layer3.2.bn2.running_var, backbone.layer3.2.bn2.num_batches_tracked, backbone.layer3.2.conv3.weight, backbone.layer3.2.bn3.weight, backbone.layer3.2.bn3.bias, backbone.layer3.2.bn3.running_mean, backbone.layer3.2.bn3.running_var, backbone.layer3.2.bn3.num_batches_tracked, backbone.layer3.3.conv1.weight, backbone.layer3.3.bn1.weight, backbone.layer3.3.bn1.bias, backbone.layer3.3.bn1.running_mean, backbone.layer3.3.bn1.running_var, backbone.layer3.3.bn1.num_batches_tracked, backbone.layer3.3.conv2.weight, backbone.layer3.3.bn2.weight, backbone.layer3.3.bn2.bias, backbone.layer3.3.bn2.running_mean, backbone.layer3.3.bn2.running_var, backbone.layer3.3.bn2.num_batches_tracked, backbone.layer3.3.conv3.weight, backbone.layer3.3.bn3.weight, backbone.layer3.3.bn3.bias, backbone.layer3.3.bn3.running_mean, backbone.layer3.3.bn3.running_var, backbone.layer3.3.bn3.num_batches_tracked, backbone.layer3.4.conv1.weight, backbone.layer3.4.bn1.weight, backbone.layer3.4.bn1.bias, backbone.layer3.4.bn1.running_mean, backbone.layer3.4.bn1.running_var, backbone.layer3.4.bn1.num_batches_tracked, backbone.layer3.4.conv2.weight, backbone.layer3.4.bn2.weight, backbone.layer3.4.bn2.bias, backbone.layer3.4.bn2.running_mean, backbone.layer3.4.bn2.running_var, backbone.layer3.4.bn2.num_batches_tracked, backbone.layer3.4.conv3.weight, backbone.layer3.4.bn3.weight, backbone.layer3.4.bn3.bias, backbone.layer3.4.bn3.running_mean, backbone.layer3.4.bn3.running_var, backbone.layer3.4.bn3.num_batches_tracked, backbone.layer3.5.conv1.weight, backbone.layer3.5.bn1.weight, backbone.layer3.5.bn1.bias, backbone.layer3.5.bn1.running_mean, backbone.layer3.5.bn1.running_var, backbone.layer3.5.bn1.num_batches_tracked, backbone.layer3.5.conv2.weight, backbone.layer3.5.bn2.weight, backbone.layer3.5.bn2.bias, backbone.layer3.5.bn2.running_mean, backbone.layer3.5.bn2.running_var, backbone.layer3.5.bn2.num_batches_tracked, backbone.layer3.5.conv3.weight, backbone.layer3.5.bn3.weight, backbone.layer3.5.bn3.bias, backbone.layer3.5.bn3.running_mean, backbone.layer3.5.bn3.running_var, backbone.layer3.5.bn3.num_batches_tracked, backbone.layer4.0.conv1.weight, backbone.layer4.0.bn1.weight, backbone.layer4.0.bn1.bias, backbone.layer4.0.bn1.running_mean, backbone.layer4.0.bn1.running_var, backbone.layer4.0.bn1.num_batches_tracked, backbone.layer4.0.conv2.weight, backbone.layer4.0.bn2.weight, backbone.layer4.0.bn2.bias, backbone.layer4.0.bn2.running_mean, backbone.layer4.0.bn2.running_var, backbone.layer4.0.bn2.num_batches_tracked, backbone.layer4.0.conv3.weight, backbone.layer4.0.bn3.weight, backbone.layer4.0.bn3.bias, backbone.layer4.0.bn3.running_mean, backbone.layer4.0.bn3.running_var, backbone.layer4.0.bn3.num_batches_tracked, backbone.layer4.0.downsample.0.weight, backbone.layer4.0.downsample.1.weight, backbone.layer4.0.downsample.1.bias, backbone.layer4.0.downsample.1.running_mean, backbone.layer4.0.downsample.1.running_var, backbone.layer4.0.downsample.1.num_batches_tracked, backbone.layer4.1.conv1.weight, backbone.layer4.1.bn1.weight, backbone.layer4.1.bn1.bias, backbone.layer4.1.bn1.running_mean, backbone.layer4.1.bn1.running_var, backbone.layer4.1.bn1.num_batches_tracked, backbone.layer4.1.conv2.weight, backbone.layer4.1.bn2.weight, backbone.layer4.1.bn2.bias, backbone.layer4.1.bn2.running_mean, backbone.layer4.1.bn2.running_var, backbone.layer4.1.bn2.num_batches_tracked, backbone.layer4.1.conv3.weight, backbone.layer4.1.bn3.weight, backbone.layer4.1.bn3.bias, backbone.layer4.1.bn3.running_mean, backbone.layer4.1.bn3.running_var, backbone.layer4.1.bn3.num_batches_tracked, backbone.layer4.2.conv1.weight, backbone.layer4.2.bn1.weight, backbone.layer4.2.bn1.bias, backbone.layer4.2.bn1.running_mean, backbone.layer4.2.bn1.running_var, backbone.layer4.2.bn1.num_batches_tracked, backbone.layer4.2.conv2.weight, backbone.layer4.2.bn2.weight, backbone.layer4.2.bn2.bias, backbone.layer4.2.bn2.running_mean, backbone.layer4.2.bn2.running_var, backbone.layer4.2.bn2.num_batches_tracked, backbone.layer4.2.conv3.weight, backbone.layer4.2.bn3.weight, backbone.layer4.2.bn3.bias, backbone.layer4.2.bn3.running_mean, backbone.layer4.2.bn3.running_var, backbone.layer4.2.bn3.num_batches_tracked, neck.lateral_convs.0.conv.weight, neck.lateral_convs.0.conv.bias, neck.lateral_convs.1.conv.weight, neck.lateral_convs.1.conv.bias, neck.lateral_convs.2.conv.weight, neck.lateral_convs.2.conv.bias, neck.lateral_convs.3.conv.weight, neck.lateral_convs.3.conv.bias, neck.fpn_convs.0.conv.weight, neck.fpn_convs.0.conv.bias, neck.fpn_convs.1.conv.weight, neck.fpn_convs.1.conv.bias, neck.fpn_convs.2.conv.weight, neck.fpn_convs.2.conv.bias, neck.fpn_convs.3.conv.weight, neck.fpn_convs.3.conv.bias, rpn_head.rpn_conv.weight, rpn_head.rpn_conv.bias, rpn_head.rpn_cls.weight, rpn_head.rpn_cls.bias, rpn_head.rpn_reg.weight, rpn_head.rpn_reg.bias, roi_head.bbox_head.fc_cls.weight, roi_head.bbox_head.fc_cls.bias, roi_head.bbox_head.fc_reg.weight, roi_head.bbox_head.fc_reg.bias, roi_head.bbox_head.shared_fcs.0.weight, roi_head.bbox_head.shared_fcs.0.bias, roi_head.bbox_head.shared_fcs.1.weight, roi_head.bbox_head.shared_fcs.1.bias, roi_head.track_head.convs.0.conv.weight, roi_head.track_head.convs.0.gn.weight, roi_head.track_head.convs.0.gn.bias, roi_head.track_head.convs.1.conv.weight, roi_head.track_head.convs.1.gn.weight, roi_head.track_head.convs.1.gn.bias, roi_head.track_head.convs.2.conv.weight, roi_head.track_head.convs.2.gn.weight, roi_head.track_head.convs.2.gn.bias, roi_head.track_head.convs.3.conv.weight, roi_head.track_head.convs.3.gn.weight, roi_head.track_head.convs.3.gn.bias, roi_head.track_head.fcs.0.weight, roi_head.track_head.fcs.0.bias, roi_head.track_head.fc_embed.weight, roi_head.track_head.fc_embed.bias
    
    missing keys in source state_dict: detector.backbone.conv1.weight, detector.backbone.bn1.weight, detector.backbone.bn1.bias, detector.backbone.bn1.running_mean, detector.backbone.bn1.running_var, detector.backbone.layer1.0.conv1.weight, detector.backbone.layer1.0.bn1.weight, detector.backbone.layer1.0.bn1.bias, detector.backbone.layer1.0.bn1.running_mean, detector.backbone.layer1.0.bn1.running_var, detector.backbone.layer1.0.conv2.weight, detector.backbone.layer1.0.bn2.weight, detector.backbone.layer1.0.bn2.bias, detector.backbone.layer1.0.bn2.running_mean, detector.backbone.layer1.0.bn2.running_var, detector.backbone.layer1.0.conv3.weight, detector.backbone.layer1.0.bn3.weight, detector.backbone.layer1.0.bn3.bias, detector.backbone.layer1.0.bn3.running_mean, detector.backbone.layer1.0.bn3.running_var, detector.backbone.layer1.0.downsample.0.weight, detector.backbone.layer1.0.downsample.1.weight, detector.backbone.layer1.0.downsample.1.bias, detector.backbone.layer1.0.downsample.1.running_mean, detector.backbone.layer1.0.downsample.1.running_var, detector.backbone.layer1.1.conv1.weight, detector.backbone.layer1.1.bn1.weight, detector.backbone.layer1.1.bn1.bias, detector.backbone.layer1.1.bn1.running_mean, detector.backbone.layer1.1.bn1.running_var, detector.backbone.layer1.1.conv2.weight, detector.backbone.layer1.1.bn2.weight, detector.backbone.layer1.1.bn2.bias, detector.backbone.layer1.1.bn2.running_mean, detector.backbone.layer1.1.bn2.running_var, detector.backbone.layer1.1.conv3.weight, detector.backbone.layer1.1.bn3.weight, detector.backbone.layer1.1.bn3.bias, detector.backbone.layer1.1.bn3.running_mean, detector.backbone.layer1.1.bn3.running_var, detector.backbone.layer1.2.conv1.weight, detector.backbone.layer1.2.bn1.weight, detector.backbone.layer1.2.bn1.bias, detector.backbone.layer1.2.bn1.running_mean, detector.backbone.layer1.2.bn1.running_var, detector.backbone.layer1.2.conv2.weight, detector.backbone.layer1.2.bn2.weight, detector.backbone.layer1.2.bn2.bias, detector.backbone.layer1.2.bn2.running_mean, detector.backbone.layer1.2.bn2.running_var, detector.backbone.layer1.2.conv3.weight, detector.backbone.layer1.2.bn3.weight, detector.backbone.layer1.2.bn3.bias, detector.backbone.layer1.2.bn3.running_mean, detector.backbone.layer1.2.bn3.running_var, detector.backbone.layer2.0.conv1.weight, detector.backbone.layer2.0.bn1.weight, detector.backbone.layer2.0.bn1.bias, detector.backbone.layer2.0.bn1.running_mean, detector.backbone.layer2.0.bn1.running_var, detector.backbone.layer2.0.conv2.weight, detector.backbone.layer2.0.bn2.weight, detector.backbone.layer2.0.bn2.bias, detector.backbone.layer2.0.bn2.running_mean, detector.backbone.layer2.0.bn2.running_var, detector.backbone.layer2.0.conv3.weight, detector.backbone.layer2.0.bn3.weight, detector.backbone.layer2.0.bn3.bias, detector.backbone.layer2.0.bn3.running_mean, detector.backbone.layer2.0.bn3.running_var, detector.backbone.layer2.0.downsample.0.weight, detector.backbone.layer2.0.downsample.1.weight, detector.backbone.layer2.0.downsample.1.bias, detector.backbone.layer2.0.downsample.1.running_mean, detector.backbone.layer2.0.downsample.1.running_var, detector.backbone.layer2.1.conv1.weight, detector.backbone.layer2.1.bn1.weight, detector.backbone.layer2.1.bn1.bias, detector.backbone.layer2.1.bn1.running_mean, detector.backbone.layer2.1.bn1.running_var, detector.backbone.layer2.1.conv2.weight, detector.backbone.layer2.1.bn2.weight, detector.backbone.layer2.1.bn2.bias, detector.backbone.layer2.1.bn2.running_mean, detector.backbone.layer2.1.bn2.running_var, detector.backbone.layer2.1.conv3.weight, detector.backbone.layer2.1.bn3.weight, detector.backbone.layer2.1.bn3.bias, detector.backbone.layer2.1.bn3.running_mean, detector.backbone.layer2.1.bn3.running_var, detector.backbone.layer2.2.conv1.weight, detector.backbone.layer2.2.bn1.weight, detector.backbone.layer2.2.bn1.bias, detector.backbone.layer2.2.bn1.running_mean, detector.backbone.layer2.2.bn1.running_var, detector.backbone.layer2.2.conv2.weight, detector.backbone.layer2.2.bn2.weight, detector.backbone.layer2.2.bn2.bias, detector.backbone.layer2.2.bn2.running_mean, detector.backbone.layer2.2.bn2.running_var, detector.backbone.layer2.2.conv3.weight, detector.backbone.layer2.2.bn3.weight, detector.backbone.layer2.2.bn3.bias, detector.backbone.layer2.2.bn3.running_mean, detector.backbone.layer2.2.bn3.running_var, detector.backbone.layer2.3.conv1.weight, detector.backbone.layer2.3.bn1.weight, detector.backbone.layer2.3.bn1.bias, detector.backbone.layer2.3.bn1.running_mean, detector.backbone.layer2.3.bn1.running_var, detector.backbone.layer2.3.conv2.weight, detector.backbone.layer2.3.bn2.weight, detector.backbone.layer2.3.bn2.bias, detector.backbone.layer2.3.bn2.running_mean, detector.backbone.layer2.3.bn2.running_var, detector.backbone.layer2.3.conv3.weight, detector.backbone.layer2.3.bn3.weight, detector.backbone.layer2.3.bn3.bias, detector.backbone.layer2.3.bn3.running_mean, detector.backbone.layer2.3.bn3.running_var, detector.backbone.layer3.0.conv1.weight, detector.backbone.layer3.0.bn1.weight, detector.backbone.layer3.0.bn1.bias, detector.backbone.layer3.0.bn1.running_mean, detector.backbone.layer3.0.bn1.running_var, detector.backbone.layer3.0.conv2.weight, detector.backbone.layer3.0.bn2.weight, detector.backbone.layer3.0.bn2.bias, detector.backbone.layer3.0.bn2.running_mean, detector.backbone.layer3.0.bn2.running_var, detector.backbone.layer3.0.conv3.weight, detector.backbone.layer3.0.bn3.weight, detector.backbone.layer3.0.bn3.bias, detector.backbone.layer3.0.bn3.running_mean, detector.backbone.layer3.0.bn3.running_var, detector.backbone.layer3.0.downsample.0.weight, detector.backbone.layer3.0.downsample.1.weight, detector.backbone.layer3.0.downsample.1.bias, detector.backbone.layer3.0.downsample.1.running_mean, detector.backbone.layer3.0.downsample.1.running_var, detector.backbone.layer3.1.conv1.weight, detector.backbone.layer3.1.bn1.weight, detector.backbone.layer3.1.bn1.bias, detector.backbone.layer3.1.bn1.running_mean, detector.backbone.layer3.1.bn1.running_var, detector.backbone.layer3.1.conv2.weight, detector.backbone.layer3.1.bn2.weight, detector.backbone.layer3.1.bn2.bias, detector.backbone.layer3.1.bn2.running_mean, detector.backbone.layer3.1.bn2.running_var, detector.backbone.layer3.1.conv3.weight, detector.backbone.layer3.1.bn3.weight, detector.backbone.layer3.1.bn3.bias, detector.backbone.layer3.1.bn3.running_mean, detector.backbone.layer3.1.bn3.running_var, detector.backbone.layer3.2.conv1.weight, detector.backbone.layer3.2.bn1.weight, detector.backbone.layer3.2.bn1.bias, detector.backbone.layer3.2.bn1.running_mean, detector.backbone.layer3.2.bn1.running_var, detector.backbone.layer3.2.conv2.weight, detector.backbone.layer3.2.bn2.weight, detector.backbone.layer3.2.bn2.bias, detector.backbone.layer3.2.bn2.running_mean, detector.backbone.layer3.2.bn2.running_var, detector.backbone.layer3.2.conv3.weight, detector.backbone.layer3.2.bn3.weight, detector.backbone.layer3.2.bn3.bias, detector.backbone.layer3.2.bn3.running_mean, detector.backbone.layer3.2.bn3.running_var, detector.backbone.layer3.3.conv1.weight, detector.backbone.layer3.3.bn1.weight, detector.backbone.layer3.3.bn1.bias, detector.backbone.layer3.3.bn1.running_mean, detector.backbone.layer3.3.bn1.running_var, detector.backbone.layer3.3.conv2.weight, detector.backbone.layer3.3.bn2.weight, detector.backbone.layer3.3.bn2.bias, detector.backbone.layer3.3.bn2.running_mean, detector.backbone.layer3.3.bn2.running_var, detector.backbone.layer3.3.conv3.weight, detector.backbone.layer3.3.bn3.weight, detector.backbone.layer3.3.bn3.bias, detector.backbone.layer3.3.bn3.running_mean, detector.backbone.layer3.3.bn3.running_var, detector.backbone.layer3.4.conv1.weight, detector.backbone.layer3.4.bn1.weight, detector.backbone.layer3.4.bn1.bias, detector.backbone.layer3.4.bn1.running_mean, detector.backbone.layer3.4.bn1.running_var, detector.backbone.layer3.4.conv2.weight, detector.backbone.layer3.4.bn2.weight, detector.backbone.layer3.4.bn2.bias, detector.backbone.layer3.4.bn2.running_mean, detector.backbone.layer3.4.bn2.running_var, detector.backbone.layer3.4.conv3.weight, detector.backbone.layer3.4.bn3.weight, detector.backbone.layer3.4.bn3.bias, detector.backbone.layer3.4.bn3.running_mean, detector.backbone.layer3.4.bn3.running_var, detector.backbone.layer3.5.conv1.weight, detector.backbone.layer3.5.bn1.weight, detector.backbone.layer3.5.bn1.bias, detector.backbone.layer3.5.bn1.running_mean, detector.backbone.layer3.5.bn1.running_var, detector.backbone.layer3.5.conv2.weight, detector.backbone.layer3.5.bn2.weight, detector.backbone.layer3.5.bn2.bias, detector.backbone.layer3.5.bn2.running_mean, detector.backbone.layer3.5.bn2.running_var, detector.backbone.layer3.5.conv3.weight, detector.backbone.layer3.5.bn3.weight, detector.backbone.layer3.5.bn3.bias, detector.backbone.layer3.5.bn3.running_mean, detector.backbone.layer3.5.bn3.running_var, detector.backbone.layer4.0.conv1.weight, detector.backbone.layer4.0.bn1.weight, detector.backbone.layer4.0.bn1.bias, detector.backbone.layer4.0.bn1.running_mean, detector.backbone.layer4.0.bn1.running_var, detector.backbone.layer4.0.conv2.weight, detector.backbone.layer4.0.bn2.weight, detector.backbone.layer4.0.bn2.bias, detector.backbone.layer4.0.bn2.running_mean, detector.backbone.layer4.0.bn2.running_var, detector.backbone.layer4.0.conv3.weight, detector.backbone.layer4.0.bn3.weight, detector.backbone.layer4.0.bn3.bias, detector.backbone.layer4.0.bn3.running_mean, detector.backbone.layer4.0.bn3.running_var, detector.backbone.layer4.0.downsample.0.weight, detector.backbone.layer4.0.downsample.1.weight, detector.backbone.layer4.0.downsample.1.bias, detector.backbone.layer4.0.downsample.1.running_mean, detector.backbone.layer4.0.downsample.1.running_var, detector.backbone.layer4.1.conv1.weight, detector.backbone.layer4.1.bn1.weight, detector.backbone.layer4.1.bn1.bias, detector.backbone.layer4.1.bn1.running_mean, detector.backbone.layer4.1.bn1.running_var, detector.backbone.layer4.1.conv2.weight, detector.backbone.layer4.1.bn2.weight, detector.backbone.layer4.1.bn2.bias, detector.backbone.layer4.1.bn2.running_mean, detector.backbone.layer4.1.bn2.running_var, detector.backbone.layer4.1.conv3.weight, detector.backbone.layer4.1.bn3.weight, detector.backbone.layer4.1.bn3.bias, detector.backbone.layer4.1.bn3.running_mean, detector.backbone.layer4.1.bn3.running_var, detector.backbone.layer4.2.conv1.weight, detector.backbone.layer4.2.bn1.weight, detector.backbone.layer4.2.bn1.bias, detector.backbone.layer4.2.bn1.running_mean, detector.backbone.layer4.2.bn1.running_var, detector.backbone.layer4.2.conv2.weight, detector.backbone.layer4.2.bn2.weight, detector.backbone.layer4.2.bn2.bias, detector.backbone.layer4.2.bn2.running_mean, detector.backbone.layer4.2.bn2.running_var, detector.backbone.layer4.2.conv3.weight, detector.backbone.layer4.2.bn3.weight, detector.backbone.layer4.2.bn3.bias, detector.backbone.layer4.2.bn3.running_mean, detector.backbone.layer4.2.bn3.running_var, detector.neck.lateral_convs.0.conv.weight, detector.neck.lateral_convs.0.conv.bias, detector.neck.lateral_convs.1.conv.weight, detector.neck.lateral_convs.1.conv.bias, detector.neck.lateral_convs.2.conv.weight, detector.neck.lateral_convs.2.conv.bias, detector.neck.lateral_convs.3.conv.weight, detector.neck.lateral_convs.3.conv.bias, detector.neck.fpn_convs.0.conv.weight, detector.neck.fpn_convs.0.conv.bias, detector.neck.fpn_convs.1.conv.weight, detector.neck.fpn_convs.1.conv.bias, detector.neck.fpn_convs.2.conv.weight, detector.neck.fpn_convs.2.conv.bias, detector.neck.fpn_convs.3.conv.weight, detector.neck.fpn_convs.3.conv.bias, detector.rpn_head.rpn_conv.weight, detector.rpn_head.rpn_conv.bias, detector.rpn_head.rpn_cls.weight, detector.rpn_head.rpn_cls.bias, detector.rpn_head.rpn_reg.weight, detector.rpn_head.rpn_reg.bias, detector.roi_head.bbox_head.fc_cls.weight, detector.roi_head.bbox_head.fc_cls.bias, detector.roi_head.bbox_head.fc_reg.weight, detector.roi_head.bbox_head.fc_reg.bias, detector.roi_head.bbox_head.shared_fcs.0.weight, detector.roi_head.bbox_head.shared_fcs.0.bias, detector.roi_head.bbox_head.shared_fcs.1.weight, detector.roi_head.bbox_head.shared_fcs.1.bias, track_head.track_head.convs.0.conv.weight, track_head.track_head.convs.0.gn.weight, track_head.track_head.convs.0.gn.bias, track_head.track_head.convs.1.conv.weight, track_head.track_head.convs.1.gn.weight, track_head.track_head.convs.1.gn.bias, track_head.track_head.convs.2.conv.weight, track_head.track_head.convs.2.gn.weight, track_head.track_head.convs.2.gn.bias, track_head.track_head.convs.3.conv.weight, track_head.track_head.convs.3.gn.weight, track_head.track_head.convs.3.gn.bias, track_head.track_head.fcs.0.weight, track_head.track_head.fcs.0.bias, track_head.track_head.fc_embed.weight, track_head.track_head.fc_embed.bias
    
    opened by yimingzhou1 1
  • BDD100k det conversion error

    BDD100k det conversion error

    When I try to run this command: python -m bdd100k.label.to_coco -m det -i bdd100k/labels/det_20/det_train.json -o data/bdd/labels/det_20/det_train_cocofmt.json I receive the following error:

    [2022-09-23 16:25:55,619 to_coco.py:301 main] Mode: det remove-ignore: False ignore-as-class: False [2022-09-23 16:25:55,619 to_coco.py:307 main] Loading annotations... [2022-09-23 16:26:02,429 to_coco.py:318 main] Converting annotations... 10%|████████ | 6879/69863 [00:00<00:08, 7435.14it/s] Traceback (most recent call last): File "/u/m/c/mcdougall/miniconda3/envs/torch310/lib/python3.10/runpy.py", line 196, in _run_module_as_main return _run_code(code, main_globals, None, File "/u/m/c/mcdougall/miniconda3/envs/torch310/lib/python3.10/runpy.py", line 86, in _run_code exec(code, run_globals) File "/u/m/c/mcdougall/miniconda3/envs/torch310/lib/python3.10/site-packages/bdd100k-1.0.0-py3.10.egg/bdd100k/label/to_coco.py", line 337, in main() File "/u/m/c/mcdougall/miniconda3/envs/torch310/lib/python3.10/site-packages/bdd100k-1.0.0-py3.10.egg/bdd100k/label/to_coco.py", line 322, in main coco = bdd100k2coco_det( File "/u/m/c/mcdougall/miniconda3/envs/torch310/lib/python3.10/site-packages/bdd100k-1.0.0-py3.10.egg/bdd100k/label/to_coco.py", line 145, in bdd100k2coco_det if frame["labels"]: KeyError: 'labels'

    This error does not occur when running with ${SET_NAME} equal to val

    opened by IMcDougall 0
  • The reference image and key image are exactly the same

    The reference image and key image are exactly the same

    In the article (QDTrack), the difference between the key image and the reference image is indicated by the image below.

    Screenshot 2022-09-05 113254

    However, when debugging the training code, I saw that the reference image metadata and key image metadata returned by the data loader are exactly the same.

    Screenshot 2022-09-05 103058

    Do I need to change a parameter before starting training or is this an error in the code? I would be glad if you inform me.

    opened by Hcayirli 4
Releases(v0.1)
Owner
ETH VIS Research Group
Visual Intelligence and Systems Group at ETH Zürich
ETH VIS Research Group
It's a implement of this paper:Relation extraction via Multi-Level attention CNNs

Relation Classification via Multi-Level Attention CNNs It's a implement of this paper:Relation Classification via Multi-Level Attention CNNs. Training

Aybss 2 Nov 04, 2022
High level network definitions with pre-trained weights in TensorFlow

TensorNets High level network definitions with pre-trained weights in TensorFlow (tested with 2.1.0 = TF = 1.4.0). Guiding principles Applicability.

Taehoon Lee 1k Dec 13, 2022
An end-to-end PyTorch framework for image and video classification

What's New: March 2021: Added RegNetZ models November 2020: Vision Transformers now available, with training recipes! 2020-11-20: Classy Vision v0.5 R

Facebook Research 1.5k Dec 31, 2022
MoveNet Single Pose on OpenVINO

MoveNet Single Pose tracking on OpenVINO Running Google MoveNet Single Pose models on OpenVINO. A convolutional neural network model that runs on RGB

35 Nov 11, 2022
FastyAPI is a Stack boilerplate optimised for heavy loads.

FastyAPI A FastAPI based Stack boilerplate for heavy loads. Explore the docs » View Demo · Report Bug · Request Feature Table of Contents About The Pr

Ali Chaayb 47 Dec 27, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
Code to reproduce results from the paper "AmbientGAN: Generative models from lossy measurements"

AmbientGAN: Generative models from lossy measurements This repository provides code to reproduce results from the paper AmbientGAN: Generative models

Ashish Bora 87 Oct 19, 2022
RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection

RODD Official Implementation of 2022 CVPRW Paper RODD: A Self-Supervised Approach for Robust Out-of-Distribution Detection Introduction: Recent studie

Umar Khalid 17 Oct 11, 2022
Lbl2Vec learns jointly embedded label, document and word vectors to retrieve documents with predefined topics from an unlabeled document corpus.

Lbl2Vec Lbl2Vec is an algorithm for unsupervised document classification and unsupervised document retrieval. It automatically generates jointly embed

sebis - TUM - Germany 61 Dec 20, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020.

RegNet Pytorch Implementation of "Desigining Network Design Spaces", Radosavovic et al. CVPR 2020. Paper | Official Implementation RegNet offer a very

Vishal R 2 Feb 11, 2022
Python implementation of ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images, AAAI2022.

ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images Binh M. Le & Simon S. Woo, "ADD:

2 Oct 24, 2022
Pytorch implementation of FlowNet by Dosovitskiy et al.

FlowNetPytorch Pytorch implementation of FlowNet by Dosovitskiy et al. This repository is a torch implementation of FlowNet, by Alexey Dosovitskiy et

Clément Pinard 762 Jan 02, 2023
Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Ali Aliev 15.3k Jan 05, 2023
Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis for Eyewear Devices

EMOShip This repository contains the EMO-Film dataset described in the paper "Do Smart Glasses Dream of Sentimental Visions? Deep Emotionship Analysis

1 Nov 18, 2022
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023
DvD-TD3: Diversity via Determinants for TD3 version

DvD-TD3: Diversity via Determinants for TD3 version The implementation of paper Effective Diversity in Population Based Reinforcement Learning. Instal

3 Feb 11, 2022
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022