Official PyTorch implementation of Spatial Dependency Networks.

Related tags

Deep Learningsdn
Overview

Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling



Example of SDN-VAE generated images.

Method Description

Spatial dependency network (SDN) is a novel neural architecture. It is based on spatial dependency layers which are designed for stacking deep neural networks that produce images e.g. generative models such as VAEs or GANs or segmentation, super-resolution and image-to-image-translation neural networks. SDNs improve upon celebrated CNNs by explicitly modeling spatial dependencies between feature vectors at each level of a deep neural network pipeline. Spatial dependency layers (i) explicitly introduce the inductive bias of spatial coherence; and (ii) offer improved modeling of long-range dependencies due to the unbounded receptive field. We applied SDN to two variants of VAE, one which we used to model image density (SDN-VAE) and one which we used to learn better disentangled representations. More generally, spatial dependency layers can be used as a drop-in replacement for convolutional layers in any image-generation-related tasks.

Graphical model of SDN layer.

Code Structure

.
├── checkpoints/               # where the model checkpoints will be stored
├── data/
     ├── ImageNet32/           # where ImageNet32 data is stored
     ├── CelebAHQ256/          # where Celeb data is stored
     ├── 3DShapes/             # where 3DShapes data is stored
     ├── lmdb_datasets.py      # LMDB data loading borrowed from https://github.com/NVlabs/NVAE
     ├── get_dataset.py        # auxiliary script for fetching data sets
├── figs/                      # figures from the paper
├── lib/
     ├── DensityVAE            # SDN-VAE which we used for density estimation
     ├── DisentanglementVAE    # VAE which we used for disentanglement
     ├── nn.py                 # The script which contains SDN and other neural net modules
     ├── probability.py        # probability models
     ├── utils.py              # utility functions
 ├── train.py                  # generic training script
 ├── evaluate.py               # the script for evaluation of trained models
 ├── train_cifar.sh            # for reproducing CIFAR10 experiments
 ├── train_celeb.sh            # for reproducing CelebAHQ256 experiments
 ├── train_imagenet.sh         # for reproducing ImageNet32 experiments
 ├── train_3dshapes.sh         # for reproducing 3DShapes experiments
 ├── requirements.txt
 ├── LICENSE
 └── README.md

Applying SDN layers to your neural network

To apply SDN layers to your framework it is sufficient that you integrate the 'lib/nn.py' file into your code. You can then import and utilize SDNLayer or ResSDNLayer (the residual variant) in the same way convolutional layer is utilized. Apart from PyTorch, no additional packages are required.

Tips & Tricks

If you would like to integrate SDN into your neural network, we recommend the following:

  • first design and debug your framework using vanilla CNN layers.
  • replace CNN layers one-by-one. Start with the lowest scale e.g. 4x4 or 8x8 to speed up debugging.
  • start with 1 or 2 directions, and then later on try using 4 directions.
  • larger number of features per SDN layers implies more expressive model which is more powerful but prone to overfitting.
  • a good idea is to use smaller number of SDN features on smaller scales and larger on larger scales.

Reproducing the experiments from the paper

Common to all experiments, you will need to install PyTorch and PyTorchLightning. The default logging system is based on Wandb but this can be changed in 'train.py'. In case you decide to use Wandb, you will need to install it and then login into your account: Follow a very simple procedure described here. To reproduce density estimation experiments you will need 8 TeslaV100 GPUs with 32Gb of memory. One way to alleviate high memory requirements is to accumulate gradient batches, however, the training will take much longer in that case. By default, you will need hardware that supports automatic mixed precision. In case your hardware does not support this, you will need to reduce the batch size, however note that the results will slightly deteriorate and that you will possibly need to reduce the learning rate too to avoid NaN values. For the disentanglement experiments, you will need a single GPU with >10Gb of memory. To install all the requirements use:

pip install -r requirements.txt

Note of caution: Ensure the right version of PyTorchLightning is used. We found multiple issues in the newer versions.

CIFAR10

The data will be automatically downloaded through PyTorch. To run the baselines that reproduce the results from the paper use:

bash train_cifar.sh
ImageNet32

To obtain the dataset go into the folder 'data/ImageNet32' and then run

bash get_imagenet_data.sh

To reproduce the experiments run:

bash train_imagenet.sh
CelebAHQ256

To obtain the dataset go into the folder 'data/CelebAHQ256' and then run

bash get_celeb_data.sh

The script is adapted from NVAE repo and is based on GLOW dataset. To reproduce the experiments run:

bash train_celeb.sh
3DShapes

To obtain the dataset follow the instructions on this GitHub repo. Place it into the 'data/3DShapes' directory. To reproduce the experiments run:

bash train_3dshapes.sh

Evaluation of trained models

To perform post hoc evaluation of your trained models, use 'evaluate.py' script and select flags corresponding to the evaluation task and the model you want to use. The evaluation can be performed on a single GPU of any type, though note that the batch size needs to be modified dependent on the available GPU memory. For the CelebAHQ256 dataset, you can download the checkpoint which contains one of the pre-trained models that we used in the paper from this link. For example, you can evaluate elbo and generate random samples by running:

python3 evaluate.py --model CelebAHQ256 --elbo --sampling

Citation

Please cite our paper if you use our code or if you re-implement our method:

@conference{miladinovic21sdn,
  title = {Spatial Dependency Networks: Neural Layers for Improved Generative Image Modeling},
  author = {Miladinović, {\DJ}or{\dj}e and Stanić, Aleksandar and Bauer, Stefan and Schmidhuber, J{\"u}rgen and Buhmann, Joachim M.},
  booktitle = {9th International Conference on Learning Representations (ICLR 2021)},
  month = may,
  year = {2021},
  month_numeric = {5}
}

Note that you might need to include the following line in your latex file:

\usepackage[T1]{fontenc}
Owner
Djordje Miladinovic
Machine learning R&D.
Djordje Miladinovic
Explanatory Learning: Beyond Empiricism in Neural Networks

Explanatory Learning This is the official repository for "Explanatory Learning: Beyond Empiricism in Neural Networks". Datasets Download the datasets

GLADIA Research Group 10 Dec 06, 2022
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Microsoft 61 Nov 14, 2022
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments 😀 😃 😆 Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective

Does-MAML-Only-Work-via-Feature-Re-use-A-Data-Set-Centric-Perspective Does MAML Only Work via Feature Re-use? A Data Set Centric Perspective Installin

2 Nov 07, 2022
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❤️

Hello 🤟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship 💝 🖨️ 👨‍💻 HackBio: https://thehackbio.com 💬 Ask us

Siddhant Sharma 7 Oct 20, 2022
Official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR)

This is the official implementation of our neural-network-based fast diffuse room impulse response generator (FAST-RIR) for generating room impulse responses (RIRs) for a given acoustic environment.

12 Jan 13, 2022
Implementation of the paper "Language-agnostic representation learning of source code from structure and context".

Code Transformer This is an official PyTorch implementation of the CodeTransformer model proposed in: D. Zügner, T. Kirschstein, M. Catasta, J. Leskov

Daniel Zügner 131 Dec 13, 2022
[CVPR 2020] Interpreting the Latent Space of GANs for Semantic Face Editing

InterFaceGAN - Interpreting the Latent Space of GANs for Semantic Face Editing Figure: High-quality facial attributes editing results with InterFaceGA

GenForce: May Generative Force Be with You 1.3k Dec 29, 2022
Reference PyTorch implementation of "End-to-end optimized image compression with competition of prior distributions"

PyTorch reference implementation of "End-to-end optimized image compression with competition of prior distributions" by Benoit Brummer and Christophe

Benoit Brummer 6 Jun 16, 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
CSE-519---Project - Job Title Analysis (Project for CSE 519 - Data Science Fundamentals)

A Multifaceted Approach to Job Title Analysis CSE 519 - Data Science Fundamentals Project Description Project consists of three parts: Salary Predicti

Jimit Dholakia 1 Jan 04, 2022
[Arxiv preprint] Causality-inspired Single-source Domain Generalization for Medical Image Segmentation (code&data-processing pipeline)

Causality-inspired Single-source Domain Generalization for Medical Image Segmentation Arxiv preprint Repository under construction. Might still be bug

Cheng 31 Dec 27, 2022
An end-to-end project on customer segmentation

End-to-end Customer Segmentation Project Note: This project is in progress. Tools Used in This Project Prefect: Orchestrate workflows hydra: Manage co

Ocelot Consulting 8 Oct 06, 2022
Data and Code for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning"

Introduction Code and data for ACL 2021 Paper "Inter-GPS: Interpretable Geometry Problem Solving with Formal Language and Symbolic Reasoning". We cons

Pan Lu 81 Dec 27, 2022
code for Image Manipulation Detection by Multi-View Multi-Scale Supervision

MVSS-Net Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision Update 22.02.17, Pretrained model for

dong_chengbo 131 Dec 30, 2022
Spatial Intention Maps for Multi-Agent Mobile Manipulation (ICRA 2021)

spatial-intention-maps This code release accompanies the following paper: Spatial Intention Maps for Multi-Agent Mobile Manipulation Jimmy Wu, Xingyua

Jimmy Wu 70 Jan 02, 2023
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021