The object detection pipeline is based on Ultralytics YOLOv5

Overview

AYOLOv2

License: GPL v3

All Contributors

The main goal of this repository is to rewrite the object detection pipeline with a better code structure for better portability and adaptability to apply new experimental methods. The object detection pipeline is based on Ultralytics YOLOv5.

What's inside of this repository

  1. YOLOv5 based portable model (model built with kindle)
  2. Model conversion (TorchScript, ONNX, TensorRT) support
  3. Tensor decomposition model with pruning optimization
  4. Stochastic Weight Averaging(SWA) support
  5. Auto search for NMS parameter optimization
  6. W&B support with model save and load functionality
  7. Representative Learning (Experimental)
  8. Distillation via soft teacher method (Experimental)
  9. C++ inference (WIP)
  10. AutoML - searching efficient architecture for the given dataset(incoming!)

Table of Contents

How to start

Install

Using conda environment

git clone https://github.com/j-marple-dev/AYolov2.git
cd AYolov2
./run_check.sh init
# Equivalent to
# conda env create -f environment.yml
# pre-commit install --hook-type pre-commit --hook-type pre-push

Using docker

Building a docker image

./run_docker.sh build
# You can add build options
# ./run_docker.sh build --no-cache

Running the container

This will mount current repository directory from local disk to docker image

./run_docker.sh run
# You can add running options
# ./run_docker.sh run -v $DATASET_PATH:/home/user/dataset

Executing the last running container

./run_docker.sh exec
Train a model
  • Example

    python3 train.py --model $MODEL_CONFIG_PATH --data $DATA_CONFIG_PATH --cfg $TRAIN_CONFIG_PATH
    # i.e.
    # python3 train.py --model res/configs/model/yolov5s.yaml --data res/configs/data/coco.yaml --cfg res/configs/cfg/train_config.yaml
    # Logging and upload trained weights to W&B
    # python3 train.py --model res/configs/model/yolov5s.yaml --wlog --wlog_name yolov5s
    Prepare dataset
    • Dataset config file
    train_path: "DATASET_ROOT/images/train"
    val_path: "DATASET_ROOT/images/val"
    
    # Classes
    nc: 10  # number of classes
    dataset: "DATASET_NAME"
    names: ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light']  # class names
    • Dataset directory structure
      • One of labels or segments directory must exist.
      • Training label type(labels or segments) will be specified in the training config.
      • images and labels or segments must have a matching filename with .txt extension.
    DATASET_ROOT
    │
    ├── images
    │   ├── train
    │   └── val
    ├── labels
    │   ├── train
    │   └── val
    ├── segments
    │   ├── train
    │   └── val
    Training config
    • Default training configurations are defined in train_config.yaml.
    • You may want to change batch_size, epochs, device, workers, label_type along with your model, dataset, and training hardware.
    • Be cautious to change other parameters. It may affect training results.
    Model config
    Multi-GPU training
    • Please use torch.distributed.run module for multi-GPU Training
    python3 -m torch.distributed.run --nproc_per_node $N_GPU train.py --model $MODEL_CONFIG_PATH --data $DATA_CONFIG_PATH --cfg $TRAIN_CONFIG_PATH
    - N_GPU: Number of GPU to use
    
Run a model validation
  • Validate from local weights
python3 val.py --weights $WEIGHT_PATH --data-cfg $DATA_CONFIG_PATH
  • You can pass W&B path to the weights argument.
python3 val.py --weights j-marple/AYolov2/179awdd1 --data-cfg $DATA_CONFIG_PATH
  • TTA (Test Time Augmentation)
python3 val.py --weights $WEIGHT_PATH --data-cfg $DATA_CONFIG_PATH --tta --tta-cfg $TTA_CFG_PATH
  • Validate with pycocotools (Only for COCO val2017 images) Future work: The val.py and val2.py should be merged together.
python3 val2.py --weights $WEIGHT_PATH --data $VAL_IMAGE_PATH --json-path $JSON_FILE_PATH

Pretrained models

Name W&B URL img_size mAPval
0.5:0.95
mAPval
0.5
params
YOLOv5s j-marple/AYolov2/33cxs5tn 640 38.2 57.5 7,235,389
YOLOv5m j-marple/AYolov2/2ktlek75 640 45.0 63.9 21,190,557
YOLOv5l decomposed j-marple/AYolov2/30t7wh1x 640 46.9 65.6 26,855,105
YOLOv5l j-marple/AYolov2/1beuv3fd 640 48.0 66.6 46,563,709
YOLOv5x decomposed j-marple/AYolov2/1gxaqgk4 640 49.2 67.6 51,512,570
YOLOv5x j-marple/AYolov2/1gxaqgk4 640 49.6 68.1 86,749,405

Advanced usages

Export model to TorchScript, ONNX, TensorRT
  • You can export a trained model to TorchScript, ONNX, or TensorRT

  • INT8 quantization is currently not supported (coming soon).

  • Usage

python3 export.py --weights $WEIGHT_PATH --type [torchscript, ts, onnx, tensorrt, trt] --dtype [fp32, fp16, int8]
  • Above command will generate both model and model config file.

    • Example) FP16, Batch size 8, Image size 640x640, TensorRT
      • model_fp16_8_640_640.trt
      • model_fp16_8_640_640_trt.yaml
      batch_size: 8
      conf_t: 0.001  # NMS confidence threshold
      dst: exp/  # Model location
      dtype: fp16  # Data type
      gpu_mem: 6  # GPU memory restriction
      img_height: 640
      img_width: 640
      iou_t: 0.65  # NMS IoU threshold
      keep_top_k: 100  # NMS top k parameter
      model_cfg: res/configs/model/yolov5x.yaml  # Base model config location
      opset: 11  # ONNX opset version
      rect: false  # Rectangular inference mode
      stride_size: 32  # Model stride size
      top_k: 512  # Pre-NMS top k parameter
      type: trt  # Model type
      verbose: 1  # Verbosity level
      weights: ./exp/yolov5x.pt  # Base model weight file location
  • Once, model has been exported, you can run val.py with the exported model.

    • ONNX inference is currently not supported.
    python3 val.py --weights model_fp16_8_640_640.trt --data-cfg $DATA_CONFIG_PATH
Applying tensor decomposition
  • A trained model can be compressed via tensor decomposition.

  • Decomposed conv is composed of 3 convolutions from 1 large convolution.

    • Example)
      • Original conv: 64x128x3x3
      • Decomposed conv: 64x32x1x1 -> 32x16x3x3 -> 16x128x1x1
  • Usage

    python3 decompose_model.py --weights $WEIGHT_PATH --loss-thr $DECOMPOSE_LOSS_THRESHOLD --prune-step $PRUNING_STEP --data-cfg $DATA_CONFIG_PATH
    ...
    [  Original] # param: 86,749,405, mAP0.5: 0.678784398716757, Speed(pre-process, inference, NMS): 0.030, 21.180, 4.223
    [Decomposed] # param: 49,508,630, mAP0.5: 0.6707606125947304, Speed(pre-process, inference, NMS): 0.030, 20.274, 4.345
    Decomposition config saved to exp/decompose/val/2021_0000_runs/args.yaml
    Decomposed model saved to exp/decompose/val/2021_0000_runs/yolov5x_decomposed.pt
    • Passing prune-step to 0 will skip pruning optimization.

Summary of tensor decomposition process

  1. Pass random tensor x to original conv (ŷ) and decomposed conv ()
  2. Compute E = Error(ŷ, ỹ)
  3. If E < loss-thr, use decomposed conv
  4. Apply pruning ratio with binary search
  5. Jump to 1 until differential of pruning ratio is less than prune-step

:: Note :: Decomposition process uses CPU only.

Knowledge distillation
  • An ad-hoc implementation of the knowledge distillation motivated from the method in "End-to-end semi-supervised object dection with soft teacher".
  • Create pseudo-labels for "unlabeled dataset" using the inference of the "teacher" model.
  • :: Note ::
    • Implemented to use the same dataset for the "training dataset" and the "unlabeled dataset". To use different datasets, the creation of the dataloader instance unlabeled_loader in distillation.py should be modified.
    • Teacher model weights are fixed during training student model. (In the original paper, teacher model is updated using "exponential moving averaging" the student model.)
  • Usage
    python distillation.py --model res/configs/model/yolov5s.yaml \
                           --cfg res/configs/cfg/distillation.yam \
                           --data res/configs/data/coco.yaml \
                           --teacher {wandb_runpath_of_pretrained_model}
Representation learning
  • Representations of a model can be automatically discovered from raw data by representation learning.

  • You can apply SimpleRL or SimCLR to find better representations of the model with --rl-type option.

    • SimpleRL is a method to minimize a difference between last two representations of a model with L1 loss.
    • SimCLR is a simple framework for contrastive self-supervised learning of visual representations without requiring specialized architectures.
  • Usage (default: base)

    • SimpleRL
      python train_repr.py --model res/configs/model/yolov5s_repr.yaml \
                           --data res/configs/data/coco_repr.yaml \
                           --cfg res/configs/cfg/train_config_repr.yaml \
                           --rl-type base
    • SimCLR
      python train_repr.py --model res/configs/model/simclr.yaml \
                           --data res/configs/data/coco_repr.yaml \
                           --cfg res/configs/cfg/train_config_simclr.yaml \
                           --rl-type simclr
Auto search for NMS parameters

If want to optimize NMS parameters(IoU threshold and confidence threshold), there are two ways to optimize.

Why there are two ways?

  • There is an issue with YOLOv5 validation.
  • It's ok with training or validating but the validation results are little different.
  1. Optimize parameters with YOLOv5 validation.
  2. Optimize parameters with COCO validation (pycocotools).

1. Optimize parameters with YOLOv5 validation.

python3 val_optimizer.py --weights ${WEIGHT_PATH | WANDB_PATH} --data-cfg $DATA_CONFIG_PATH

2. Optimize parameters with COCO validation.

python3 val_optimizer.py --weights ${WEIGHT_PATH | WANDB_PATH} --data-cfg $DATA_CONFIG_PATH --run-json --json-path $JSON_FILE_PATH

The --json-path is optional.

Advanced usage

  • If you have baseline network, give --base-map50 and --base-time arguments which are used for objective function.
  • To avoid the optimized parameters overfits, use --n-skip option to skip some images.
Applying SWA(Stochastic Weight Averaging)

There are three steps to apply SWA (Stochastic Weight Averaging):

  1. Fine-tune pre-trained model
  2. Create SWA model
  3. Test SWA model

1. Fine-tune pre-trained model

Example

$ python train.py --model yolov5l_kindle.pt \
                  --data res/configs/data/coco.yaml \
                  --cfg res/configs/cfg/finetune.yaml \
                  --wlog --wlog_name yolov5l_swa \
                  --use_swa

2. Create SWA model

Example

$ python create_swa_model.py --model_dir exp/train/2021_1104_runs/weights \
                             --swa_model_name swa_best5.pt \
                             --best_num 5

Usage

$ python create_swa_model.py --help
usage: create_swa_model.py [-h] --model_dir MODEL_DIR
                           [--swa_model_name SWA_MODEL_NAME]
                           [--best_num BEST_NUM]

optional arguments:
  -h, --help            show this help message and exit
  --model_dir MODEL_DIR
                        directory of trained models to apply SWA (default: )
  --swa_model_name SWA_MODEL_NAME
                        file name of SWA model (default: swa.pt)
  --best_num BEST_NUM   the number of trained models to apply SWA (default: 5)

3. Test SWA model

Example

$ python val.py --weights exp/train/2021_1104_runs/weights/swa_best5.pt \
                --model-cfg '' \
                --data-cfg res/configs/data/coco.yaml \
                --conf-t 0.1 --iou-t 0.2

References

Object Detection

[1] Ultralytics YOLOv5 - https://github.com/ultralytics/yolov5

[2] YOLOR implementation - https://github.com/WongKinYiu/yolor.git

[3] MobileViT implementation - https://github.com/chinhsuanwu/mobilevit-pytorch

[4] Kindle - Making a PyTorch model easier than ever! - https://github.com/JeiKeiLim/kindle

[5] Wang, Chien-Yao, I-Hau Yeh, and Hong-Yuan Mark Liao. "You Only Learn One Representation: Unified Network for Multiple Tasks." arXiv preprint arXiv:2105.04206 (2021).

[6] Mehta, Sachin, and Mohammad Rastegari. "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer." arXiv preprint arXiv:2110.02178 (2021).

[7] Ghiasi, Golnaz, et al. "Simple copy-paste is a strong data augmentation method for instance segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

Stochastic Weight Averaging

[8] SWA Object Detection implementation - https://github.com/hyz-xmaster/swa_object_detection

[9] Izmailov, Pavel, et al. "Averaging weights leads to wider optima and better generalization." arXiv preprint arXiv:1803.05407 (2018).

[10] Zhang, Haoyang, et al. "Swa object detection." arXiv preprint arXiv:2012.12645 (2020).

Knowledge Distillation

[11] Xu, Mengde, et al. "End-to-End Semi-Supervised Object Detection with Soft Teacher." arXiv preprint arXiv:2106.09018 (2021).

[12] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2020.

[13] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." International conference on machine learning. PMLR, 2020.

[14] Grill, Jean-Bastien, et al. "Bootstrap your own latent: A new approach to self-supervised learning." arXiv preprint arXiv:2006.07733 (2020).

[15] Roh, Byungseok, et al. "Spatially consistent representation learning." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021.

Tensor Decomposition and Pruning

[16] PyTorch tensor decompositions - https://github.com/jacobgil/pytorch-tensor-decompositions

[17] PyTorch pruning tutorial - https://pytorch.org/tutorials/intermediate/pruning_tutorial.html

Representation Learning

[18] Bengio, Yoshua et al. "Representation Learning: A Review and New Perspectives." IEEE Transactions on Pattern Analysis and Machine Intelligence. 2013.

[19] Chen, Ting et al. "A Simple Framework for Contrastive Learning of Visual Representations." Proceedings of the 37th International Conference on Machine Learning. 2020

Non Maximum Suppression

[20] Batched NMS - https://github.com/ultralytics/yolov3/blob/f915bf175c02911a1f40fbd2de8494963d4e7914/utils/utils.py#L562-L563

[21] Fast NMS - https://github.com/ultralytics/yolov3/blob/77e6bdd3c1ea410b25c407fef1df1dab98f9c27b/utils/utils.py#L557-L559

[22] Matrix NMS - https://github.com/ultralytics/yolov3/issues/679#issuecomment-594132977

[23] Merge NMS - https://github.com/ultralytics/yolov5/blob/master/utils/general.py#L710-L722

[24] Cluster NMS - https://github.com/Zzh-tju/yolov5/blob/master/utils/general.py#L689-L774


Contributors

Thanks goes to these wonderful people (emoji key):


Jongkuk Lim

💻

Haneol Kim

💻

Hyungseok Shin

💻

Hyunwook Kim

💻

This project follows the all-contributors specification. Contributions of any kind are welcome!

The pytorch implementation of the paper "text-guided neural image inpainting" at MM'2020

TDANet: Text-Guided Neural Image Inpainting, MM'2020 (Oral) MM | ArXiv This repository implements the paper "Text-Guided Neural Image Inpainting" by L

LisaiZhang 75 Dec 22, 2022
Volsdf - Volume Rendering of Neural Implicit Surfaces

Volume Rendering of Neural Implicit Surfaces Project Page | Paper | Data This re

Lior Yariv 221 Jan 07, 2023
STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech

STYLER: Style Factor Modeling with Rapidity and Robustness via Speech Decomposition for Expressive and Controllable Neural Text to Speech Keon Lee, Ky

Keon Lee 114 Dec 12, 2022
Open source implementation of AceNAS: Learning to Rank Ace Neural Architectures with Weak Supervision of Weight Sharing

AceNAS This repo is the experiment code of AceNAS, and is not considered as an official release. We are working on integrating AceNAS as a built-in st

Yuge Zhang 6 Sep 07, 2022
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
SLIDE : In Defense of Smart Algorithms over Hardware Acceleration for Large-Scale Deep Learning Systems

The SLIDE package contains the source code for reproducing the main experiments in this paper. Dataset The Datasets can be downloaded in Amazon-

Intel Labs 72 Dec 16, 2022
Code for ECCV 2020 paper "Contacts and Human Dynamics from Monocular Video".

Contact and Human Dynamics from Monocular Video This is the official implementation for the ECCV 2020 spotlight paper by Davis Rempe, Leonidas J. Guib

Davis Rempe 207 Jan 05, 2023
Code for the paper "Functional Regularization for Reinforcement Learning via Learned Fourier Features"

Reinforcement Learning with Learned Fourier Features State-space Soft Actor-Critic Experiments Move to the state-SAC-LFF repository. cd state-SAC-LFF

Alex Li 10 Nov 11, 2022
FS2KToolbox FS2K Dataset Towards the translation between Face

FS2KToolbox FS2K Dataset Towards the translation between Face -- Sketch. Download (photo+sketch+annotation): Google-drive, Baidu-disk, pw: FS2K. For

Deng-Ping Fan 5 Jan 03, 2023
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
A simple but complete full-attention transformer with a set of promising experimental features from various papers

x-transformers A concise but fully-featured transformer, complete with a set of promising experimental features from various papers. Install $ pip ins

Phil Wang 2.3k Jan 03, 2023
RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos

RSC-Net: 3D Human Pose, Shape and Texture from Low-Resolution Images and Videos Implementation for "3D Human Pose, Shape and Texture from Low-Resoluti

XiangyuXu 42 Nov 10, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
A Python wrapper for Google Tesseract

Python Tesseract Python-tesseract is an optical character recognition (OCR) tool for python. That is, it will recognize and "read" the text embedded i

Matthias A Lee 4.6k Jan 05, 2023
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection This material is supplementray code for paper accepted in ICDAR 2021 We h

NCSOFT 30 Dec 21, 2022
Corruption Invariant Learning for Re-identification

Corruption Invariant Learning for Re-identification The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS

Minghui Chen 73 Dec 08, 2022