Corruption Invariant Learning for Re-identification

Overview

Corruption Invariant Learning for Re-identification

The official repository for Benchmarks for Corruption Invariant Person Re-identification (NeurIPS 2021 Track on Datasets and Benchmarks), with exhaustive study on corruption invariant learning in single- and cross-modality ReID datasets, including Market-1501-C, CUHK03-C, MSMT17-C, SYSU-MM01-C, RegDB-C.

PWC PWC PWC PWC PWC

Maintenance Plan

The benchmark will be maintained by the authors. We will get constant lectures about the new proposed ReID models and evaluate them under the CIL benchmark settings in time. Besides, we gladly take feedback to the CIL benchmark and welcome any contributions in terms of the new ReID models and corresponding evaluations. Please feel free to contact us, [email protected] .

TODO:

  • other datasets configurations
  • get started tutorial
  • more detailed statistical evaluations
  • checkpoints of the baseline models
  • cross-modality preson Re-ID dataset, CUHK-PEDES
  • other ReID datasets, like VehicleID, VeRi-776, etc.

(Note: codebase from TransReID)

Quick Start

1. Install dependencies

  • python=3.7.0
  • pytorch=1.6.0
  • torchvision=0.7.0
  • timm=0.4.9
  • albumentations=0.5.2
  • imagecorruptions=1.1.2
  • h5py=2.10.0
  • cython=0.29.24
  • yacs=0.1.6

2. Prepare dataset

Download the datasets, Market-1501, CUHK03, MSMT17. Set the root path of the dataset in congigs/Market/resnet_base.yml, DATASETS: ROOT_DIR: ('root'), or set it in scripts/train_market.sh, DATASETS.ROOT_DIR "('root')".

3. Train

Train a CIL model on Market-1501,

sh ./scripts/train_market.sh

4. Test

Test the CIL model on Market-1501,

sh ./scripts/eval_market.sh

Evaluating Corruption Robustness On-the-fly

Corruption Transform

The main code of corruption transform. (See contextual code in ./datasets/make_dataloader.py, line 59)

from imagecorruptions.corruptions import *

corruption_function = [gaussian_noise, shot_noise, impulse_noise, defocus_blur,
    glass_blur, motion_blur, zoom_blur, snow, frost, fog, brightness, contrast,
    elastic_transform, pixelate, jpeg_compression, speckle_noise,
    gaussian_blur, spatter, saturate, rain]
    
class corruption_transform(object):
    def __init__(self, level=0, type='all'):
        self.level = level
        self.type = type

    def __call__(self, img):
        if self.level > 0 and self.level < 6:
            level_idx = self.level
        else:
            level_idx = random.choice(range(1, 6))
        if self.type == 'all':
            corrupt_func = random.choice(corruption_function)
        else:
            func_name_list = [f.__name__ for f in corruption_function]
            corrupt_idx = func_name_list.index(self.type)
            corrupt_func = corruption_function[corrupt_idx]
        c_img = corrupt_func(img.copy(), severity=level_idx)
        img = Image.fromarray(np.uint8(c_img))
        return img

Evaluating corruption robustness can be realized on-the-fly by modifing the transform function uesed in test dataloader. (See details in ./datasets/make_dataloader.py, Line 266)

val_with_corruption_transforms = T.Compose([
    corruption_transform(0),
    T.Resize(cfg.INPUT.SIZE_TEST),
    T.ToTensor(),])

Rain details

We introduce a rain corruption type, which is a common type of weather condition, but it is missed by the original corruption benchmark. (See details in ./datasets/make_dataloader.py, Line 27)

def rain(image, severity=1):
    if severity == 1:
        type = 'drizzle'
    elif severity == 2 or severity == 3:
        type = 'heavy'
    elif severity == 4 or severity == 5:
        type = 'torrential'
    blur_value = 2 + severity
    bright_value = -(0.05 + 0.05 * severity)
    rain = abm.Compose([
        abm.augmentations.transforms.RandomRain(rain_type=type, 
        blur_value=blur_value, brightness_coefficient=1, always_apply=True),
        abm.augmentations.transforms.RandomBrightness(limit=[bright_value, 
        bright_value], always_apply=True)])
    width, height = image.size
    if height <= 60:
        scale_factor = 65.0 / height
        new_size = (int(width * scale_factor), 65)
        image = image.resize(new_size)
    return rain(image=np.array(image))['image']

Baselines

  • Single-modality datasets
                                                                                   
Dataset Method Clean Eval. Corruption Eval.
mINP mAP Rank-1 mINP mAP Rank-1
Market-1501 BoT 59.30 85.06 93.38 0.20 8.42 27.05
AGW 64.03 86.51 94.00 0.35 12.13 31.90
SBS 60.03 88.33 95.90 0.29 11.54 34.13
CIL (ours) 57.90 84.04 93.38 1.76 (0.13) 28.03 (0.45) 55.57 (0.63)
MSMT17 BoT 9.91 48.34 73.53 0.07 5.28 20.20
AGW 12.38 51.84 75.21 0.08 6.53 22.77
SBS 10.26 56.62 82.02 0.05 7.89 28.77
CIL (ours) 12.45 52.40 76.10 0.32 (0.03) 15.33 (0.20) 39.79 (0.45)
CUHK03  AGW   49.97   62.25   64.64   0.46   3.45  5.90 
 CIL (ours)   53.87   65.16   67.29   4.25 (0.39)   16.33 (0.76)   22.96 (1.04) 
  • Cross-modality datasets

Note: For RegDB dataset, Mode A and Mode B represent visible-to-thermal and thermal-to-visible experimental settings, respectively. And for SYSU-MM01 dataset, Mode A and Mode B represent all search and indoor search respectively. Note that we only corrupt RGB (visible) images in the corruption evaluation.

                                                                                                                                                                                                                                                                     
Dataset Method Mode A Mode B
Clean Eval. Corruption Eval. Clean Eval. Corruption Eval.
mINP mAP R-1 mINP mAP R-1 mINP mAP R-1 mINP mAP R-1
SYSU-MM01  AGW   36.17   47.65   47.50   14.73   29.99   34.42   59.74   62.97   54.17   35.39   40.98   33.80 
 CIL (ours)   38.15   47.64   45.51   22.48 (1.65)   35.92 (1.22)   36.95 (0.67)   57.41   60.45   50.98   43.11 (4.19)   48.65 (4.57)   40.73 (5.55) 
RegDB  AGW   54.10   68.82   75.78   32.88   43.09   45.44   52.40   68.15   75.29   6.00   41.37   67.54 
 CIL (ours)   55.68   69.75   74.96   38.66 (0.01)   49.76 (0.03)   52.25 (0.03)   55.50   69.21   74.95   11.94 (0.12)   47.90 (0.01)   67.17 (0.06)

Recent Advance in Person Re-ID

Leaderboard

Market1501-C

(Note: ranked by mAP on corrupted test set)

Method Reference Clean Eval. Corruption Eval.
mINP mAP Rank-1 mINP mAP Rank-1
TransReID Shuting He et al. (2021) 69.29 88.93 95.07 1.98 27.38 53.19
CaceNet Fufu Yu et al. (2020) 70.47 89.82 95.40 0.67 18.24 42.92
LightMBN Fabian Herzog et al. (2021) 73.29 91.54 96.53 0.50 14.84 38.68
PLR-OS Ben Xie et al. (2020) 66.42 88.93 95.19 0.48 14.23 37.56
RRID Hyunjong Park et al. (2019) 67.14 88.43 95.19 0.46 13.45 36.57
Pyramid Feng Zheng et al. (2018) 61.61 87.50 94.86 0.36 12.75 35.72
PCB Yifan Sun et al.(2017) 41.97 82.19 94.15 0.41 12.72 34.93
BDB Zuozhuo Dai et al. (2018) 61.78 85.47 94.63 0.32 10.95 33.79
Aligned++ Hao Luo et al. (2019) 47.31 79.10 91.83 0.32 10.95 31.00
AGW Mang Ye et al. (2020) 65.40 88.10 95.00 0.30 10.80 33.40
MHN Binghui Chen et al. (2019) 55.27 85.33 94.50 0.38 10.69 33.29
LUPerson Dengpan Fu et al. (2020) 68.71 90.32 96.32 0.29 10.37 32.22
OS-Net Kaiyang Zhou et al. (2019) 56.78 85.67 94.69 0.23 10.37 30.94
VPM Yifan Sun et al. (2019) 50.09 81.43 93.79 0.31 10.15 31.17
DG-Net Zhedong Zheng et al. (2019) 61.60 86.09 94.77 0.35 9.96 31.75
ABD-Net Tianlong Chen et al. (2019) 64.72 87.94 94.98 0.26 9.81 29.65
MGN Guanshuo Wang et al.(2018) 60.86 86.51 93.88 0.29 9.72 29.56
F-LGPR Yunpeng Gong et al. (2021) 65.48 88.22 95.37 0.23 9.08 29.35
TDB Rodolfo Quispe et al. (2020) 56.41 85.77 94.30 0.20 8.90 28.56
LGPR Yunpeng Gong et al. (2021) 58.71 86.09 94.51 0.24 8.26 27.72
BoT Hao Luo et al. (2019) 51.00 83.90 94.30 0.10 6.60 26.20

CUHK03-C (detected)

(Note: ranked by mAP on corrupted test set)

Method Reference Clean Eval. Corruption Eval.
mINP mAP Rank-1 mINP mAP Rank-1
CaceNet Fufu Yu et al. (2020) 65.22 75.13 77.64 2.09 10.62 17.04
Pyramid Feng Zheng et al. (2018) 61.41 73.14 79.54 1.10 8.03 10.42
RRID Hyunjong Park et al. (2019) 55.81 67.63 74.99 1.00 7.30 9.66
PLR-OS Ben Xie et al. (2020) 62.72 74.67 78.14 0.89 6.49 10.99
Aligned++ Hao Luo et al. (2019) 47.32 59.76 62.07 0.56 4.87 7.99
MGN Guanshuo Wang et al.(2018) 51.18 62.73 69.14 0.46 4.20 5.44
MHN Binghui Chen et al. (2019) 56.52 66.77 72.21 0.46 3.97 8.27

MSMT17-C (Version 2)

(Note: ranked by mAP on corrupted test set)

Method Reference Clean Eval. Corruption Eval.
mINP mAP Rank-1 mINP mAP Rank-1
OS-Net Kaiyang Zhou et al. (2019) 4.05 40.05 71.86 0.08 7.86 28.51
AGW Mang Ye et al. (2020) 12.38 51.84 75.21 0.08 6.53 22.77
BoT Hao Luo et al. (2019) 9.91 48.34 73.53 0.07 5.28 20.20

Citation

Kindly include a reference to this paper in your publications if it helps your research:

@misc{chen2021benchmarks,
    title={Benchmarks for Corruption Invariant Person Re-identification},
    author={Minghui Chen and Zhiqiang Wang and Feng Zheng},
    year={2021},
    eprint={2111.00880},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
Owner
Minghui Chen
Minghui Chen
Train a state-of-the-art yolov3 object detector from scratch!

TrainYourOwnYOLO: Building a Custom Object Detector from Scratch This repo let's you train a custom image detector using the state-of-the-art YOLOv3 c

AntonMu 616 Jan 08, 2023
3rd place solution for the Weather4cast 2021 Stage 1 Challenge

weather4cast2021_Stage1 3rd place solution for the Weather4cast 2021 Stage 1 Challenge Dependencies The code can be executed from a fresh environment

5 Aug 14, 2022
Cross-platform CLI tool to generate your Github profile's stats and summary.

ghs Cross-platform CLI tool to generate your Github profile's stats and summary. Preview Hop on to examples for other usecases. Jump to: Installation

HackerRank 134 Dec 20, 2022
Dynamical Wasserstein Barycenters for Time Series Modeling

Dynamical Wasserstein Barycenters for Time Series Modeling This is the code related for the Dynamical Wasserstein Barycenter model published in Neurip

8 Sep 09, 2022
Gesture-controlled Video Game. Just swing your finger and play the game without touching your PC

Gesture Controlled Video Game Detailed Blog : https://www.analyticsvidhya.com/blog/2021/06/gesture-controlled-video-game/ Introduction This project is

Devbrat Anuragi 35 Jan 06, 2023
[ICCV 2021 Oral] NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo

NerfingMVS Project Page | Paper | Video | Data NerfingMVS: Guided Optimization of Neural Radiance Fields for Indoor Multi-view Stereo Yi Wei, Shaohui

Yi Wei 369 Dec 24, 2022
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
This repository contains the reference implementation for our proposed Convolutional CRFs.

ConvCRF This repository contains the reference implementation for our proposed Convolutional CRFs in PyTorch (Tensorflow planned). The two main entry-

Marvin Teichmann 553 Dec 07, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 126 Jan 06, 2023
Implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork.

YOLOv4-large This is the implementation of "Scaled-YOLOv4: Scaling Cross Stage Partial Network" using PyTorch framwork. YOLOv4-CSP YOLOv4-tiny YOLOv4-

Kin-Yiu, Wong 2k Jan 02, 2023
Self-Supervised Multi-Frame Monocular Scene Flow (CVPR 2021)

Self-Supervised Multi-Frame Monocular Scene Flow 3D visualization of estimated depth and scene flow (overlayed with input image) from temporally conse

Visual Inference Lab @TU Darmstadt 85 Dec 22, 2022
Arch-Net: Model Distillation for Architecture Agnostic Model Deployment

Arch-Net: Model Distillation for Architecture Agnostic Model Deployment The official implementation of Arch-Net: Model Distillation for Architecture A

MEGVII Research 22 Jan 05, 2023
Official PyTorch implementation of "Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets" (ICLR 2021)

Rapid Neural Architecture Search by Learning to Generate Graphs from Datasets This is the official PyTorch implementation for the paper Rapid Neural A

48 Dec 26, 2022
Repository to run object detection on a model trained on an autonomous driving dataset.

Autonomous Driving Object Detection on the Raspberry Pi 4 Description of Repository This repository contains code and instructions to configure the ne

Ethan 51 Nov 17, 2022
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
Convert weight file.pth to weight file.blob

CONVERT YOUR MODEL TO IR FORMAT INSTALLATION OpenVino Toolkit Download openvinotoolkit 2021.3 version : Link Instruction of installation : Link Pytorc

Tran Anh Tuan 3 Nov 18, 2021
Official codebase for ICLR oral paper Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling

CLIORA This is the official codebase for ICLR oral paper: Unsupervised Vision-Language Grammar Induction with Shared Structure Modeling. We introduce

Bo Wan 32 Dec 23, 2022
Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord.

numpy2tfrecord Simple helper library to convert a collection of numpy data to tfrecord, and build a tensorflow dataset from the tfrecord. Installation

Ryo Yonetani 2 Jan 16, 2022
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
HNN: Human (Hollywood) Neural Network

HNN: Human (Hollywood) Neural Network Learn the top 1000 actors on IMDB with your very own low cost, highly parallel, CUDAless biological neural netwo

Madhava Jay 0 Dec 21, 2021