Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

Overview

ProGen - (wip)

Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily transferrable between the two)

Install

$ pip install progen-transformer

Usage

from jax import random
from haiku import PRNGSequence
from progen_transformer import ProGen

model = ProGen(
    num_tokens = 256,
    dim = 512,
    seq_len = 1024,
    window_size = 256,       # local attention window size
    depth = 12,              # depth
    heads = 8,               # attention heads
    dim_head = 64,           # dimension per head
    ff_glu = True,           # use GLU in feedforward, from Noam's paper
    global_mlp_depth = 2     # last N global gmlp layers
)

rng = PRNGSequence(42)
seq = random.randint(next(rng), (1024,), 0, 256)

params = model.init(next(rng), seq)
logits = model.apply(params, next(rng), seq) # (1024, 256)

Training from Uniref

Download Uniref50 from UniProt and place uniref50.fasta in the root directory

$ python gen_train_data.py

You should see a lot of green if everything succeeds. Then

$ python train.py

By default, the script will checkpoint and resume automatically, but if you wish to clear your progress and restart, just add a --new flag

$ python train.py --new

Model checkpoints will be saved periodically to ./ckpts

Todo

  • train tfrecords from google cloud storage path
  • generate validation tfrecords
  • add panda integration with GO annotations
  • resume from correct place in tfrecord even if batch size is changed inbetween runs, display number of sequences processed (aiming for 1 billion)
  • model parallelism with pjit
  • bfloat16 on xla
  • checkpoint and resume from a google cloud storage path
  • config to annotation to template string with jinja2 - use jinja2 for wandb html logging as well
  • manage experimental tracker state, and also allow ability to turn it off by piping to noop
  • add a confirmation before clearing a folder for --new run
  • engineer mask in cross entropy loss so that padding can be reused as end-of-string token
  • flip seq # annotation order with prob set in config
  • keep N last checkpoints

Citations

@misc{madani2020progen,
    title   = {ProGen: Language Modeling for Protein Generation}, 
    author  = {Ali Madani and Bryan McCann and Nikhil Naik and Nitish Shirish Keskar and Namrata Anand and Raphael R. Eguchi and Po-Ssu Huang and Richard Socher},
    year    = {2020},
    eprint  = {2004.03497},
    archivePrefix = {arXiv},
    primaryClass = {q-bio.BM}
}
@misc{su2021roformer,
    title   = {RoFormer: Enhanced Transformer with Rotary Position Embedding},
    author  = {Jianlin Su and Yu Lu and Shengfeng Pan and Bo Wen and Yunfeng Liu},
    year    = {2021},
    eprint  = {2104.09864},
    archivePrefix = {arXiv},
    primaryClass = {cs.CL}
}
@misc{shazeer2020glu,
    title   = {GLU Variants Improve Transformer},
    author  = {Noam Shazeer},
    year    = {2020},
    url     = {https://arxiv.org/abs/2002.05202}
}
You might also like...
Implementation of the GVP-Transformer, which was used in the paper
Implementation of the GVP-Transformer, which was used in the paper "Learning inverse folding from millions of predicted structures" for de novo protein design alongside Alphafold2

GVP Transformer (wip) Implementation of the GVP-Transformer, which was used in the paper Learning inverse folding from millions of predicted structure

A pytorch-version implementation codes of paper:
A pytorch-version implementation codes of paper: "BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation"

BSN++: Complementary Boundary Regressor with Scale-Balanced Relation Modeling for Temporal Action Proposal Generation A pytorch-version implementation

🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training

Predicting lncRNA–protein interactions based on graph autoencoders and collaborative training Code for our paper "Predicting lncRNA–protein interactio

Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction".

GNN_PPI Codes and models for the paper "Learning Unknown from Correlations: Graph Neural Network for Inter-novel-protein Interaction Prediction". Lear

RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

 Generative Models for Graph-Based Protein Design
Generative Models for Graph-Based Protein Design

Graph-Based Protein Design This repo contains code for Generative Models for Graph-Based Protein Design by John Ingraham, Vikas Garg, Regina Barzilay

7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

kaggle-hpa-2021-7th-place-solution Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle. A description of the met

Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix
Graph-based community clustering approach to extract protein domains from a predicted aligned error matrix

Using a predicted aligned error matrix corresponding to an AlphaFold2 model , returns a series of lists of residue indices, where each list corresponds to a set of residues clustering together into a pseudo-rigid domain.

Comments
  • protein bert uniref90 dataset

    protein bert uniref90 dataset

    (discussed in discord)

    after running the first step (create_uniref_db) of https://github.com/nadavbra/protein_bert I got a 24GB file "uniref_proteins_and_annotations.db" . It seems it could be useful for generate sequences for this project, sharing the links there

    • https://gitlab.com/rom1504/uniref data
    • colab to get the db and do a few queries https://colab.research.google.com/drive/1BGYEBDmD0yToLNou2T-t-QbJV5wCtIBz#scrollTo=21U3PpCp-pxr There are 135301051 records in the db, in a table looking like:
    CREATE TABLE "protein_annotations" (
        "index"    INTEGER,
        "tax_id"    REAL,
        "uniprot_name"    TEXT,
        "go_annotations"    TEXT,
        "flat_go_annotations"    TEXT,
        "n_go_annotations"    INTEGER,
        "complete_go_annotation_indices"    TEXT,
        "n_complete_go_annotations"    INTEGER
    );
    

    Sample look like this:

    | | index | tax_id | uniprot_name | go_annotations | flat_go_annotations | n_go_annotations | complete_go_annotation_indices | n_complete_go_annotations | |---:|--------:|-----------------:|:-----------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------|-------------------:|:---------------------------------|----------------------------:| | 0 | 0 | 1.57204e+06 | A0A5A9P0L4_9TELE | {"GO Molecular Function": ["GO:0003755", "GO:0005524", "GO:0004672", "GO:0005509"], "GO Biological Process": [], "GO Cellular Component": []} | ["GO:0003755", "GO:0004672", "GO:0005509", "GO:0005524"] | 4 | [2761, 3561, 4193, 4205] | 4 | | 1 | 1 | 648755 | UPI0016133188 | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 2 | 2 | 1.93059e+06 | A0A410P257_9BACT | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 3 | 3 | 519421 | UPI0019403D63 | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 4 | 4 | 72004 | A0A6B0RPA5_9CETA | {"GO Molecular Function": ["GO:0005524", "GO:0004672"], "GO Biological Process": [], "GO Cellular Component": []} | ["GO:0004672", "GO:0005524"] | 2 | [3561, 4205] | 2 | | 5 | 5 | 375764 | A0A672ZWI7_9TELE | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 6 | 6 | 1.41558e+06 | A0A6P7YNV3_9AMPH | {"GO Molecular Function": ["GO:0005524", "GO:0004672"], "GO Biological Process": [], "GO Cellular Component": ["GO:0005886"]} | ["GO:0004672", "GO:0005524", "GO:0005886"] | 3 | [3561, 4205, 4526] | 3 | | 7 | 7 | 240159 | A0A4U5TZD8_COLLU | {"GO Molecular Function": ["GO:0005524", "GO:0004672"], "GO Biological Process": [], "GO Cellular Component": ["GO:0016021", "GO:0005886"]} | ["GO:0004672", "GO:0005524", "GO:0005886", "GO:0016021"] | 4 | [3561, 4205, 4526, 10019] | 4 | | 8 | 8 | 146911 | UPI00074FFD9C | {"GO Molecular Function": [], "GO Biological Process": [], "GO Cellular Component": []} | [] | 0 | [] | 0 | | 9 | 9 | 260995 | A0A6P8RG40_GEOSA | {"GO Molecular Function": ["GO:0005524", "GO:0004672"], "GO Biological Process": [], "GO Cellular Component": ["GO:0005886"]} | ["GO:0004672", "GO:0005524", "GO:0005886"] | 3 | [3561, 4205, 4526] | 3 |

    opened by rom1504 4
Releases(0.0.36)
Owner
Phil Wang
Working with Attention
Phil Wang
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
NExT-QA: Next Phase of Question-Answering to Explaining Temporal Actions (CVPR2021)

NExT-QA We reproduce some SOTA VideoQA methods to provide benchmark results for our NExT-QA dataset accepted to CVPR2021 (with 1 'Strong Accept' and 2

Junbin Xiao 50 Nov 24, 2022
python debugger and anti-vm that checks if you're in a virtual machine or if someones trying to debug your file

Anti-Debug was made by Love ❌ code ✅ 🎉 ・What it checks for ・ Kills tools that can be used to debug your file ・ Exits if ran in vm (supports different

Rdimo 31 Aug 09, 2022
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
Implementation of SegNet: A Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-Wise Labelling

Caffe SegNet This is a modified version of Caffe which supports the SegNet architecture As described in SegNet: A Deep Convolutional Encoder-Decoder A

Alex Kendall 1.1k Jan 02, 2023
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 29, 2022
Training code and evaluation benchmarks for the "Self-Supervised Policy Adaptation during Deployment" paper.

Self-Supervised Policy Adaptation during Deployment PyTorch implementation of PAD and evaluation benchmarks from Self-Supervised Policy Adaptation dur

Nicklas Hansen 101 Nov 01, 2022
Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation

CorrNet This project provides the code and results for 'Lightweight Salient Object Detection in Optical Remote Sensing Images via Feature Correlation'

Gongyang Li 13 Nov 03, 2022
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023
This repository is dedicated to developing and maintaining code for experiments with wide neural networks.

Wide-Networks This repository contains the code of various experiments on wide neural networks. In particular, we implement classes for abc-parameteri

Karl Hajjar 0 Nov 02, 2021
Chainer implementation of recent GAN variants

Chainer-GAN-lib This repository collects chainer implementation of state-of-the-art GAN algorithms. These codes are evaluated with the inception score

399 Oct 23, 2022
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
Compute FID scores with PyTorch.

FID score for PyTorch This is a port of the official implementation of Fréchet Inception Distance to PyTorch. See https://github.com/bioinf-jku/TTUR f

2.1k Jan 06, 2023
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Tianfei Zhou 239 Dec 26, 2022
Keras implementation of AdaBound

AdaBound for Keras Keras port of AdaBound Optimizer for PyTorch, from the paper Adaptive Gradient Methods with Dynamic Bound of Learning Rate. Usage A

Somshubra Majumdar 132 Sep 23, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022