7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle

Overview

kaggle-hpa-2021-7th-place-solution

Code for 7th place solution of Human Protein Atlas - Single Cell Classification on Kaggle.

A description of the method can be found in this post in the kaggle discussion.

Dataset Preparation

Resize Images

# Resize train images to 768x768
python scripts/hap_segmenter/create_cell_mask.py resize_image \
    --input_directory data/input/hpa-single-cell-image-classification.zip/train \
    --output_directory data/input/hpa-768768.zip \
    --image_size 768
# Resize train images to 1536x1536
python scripts/hap_segmenter/create_cell_mask.py resize_image \
    --input_directory data/input/hpa-single-cell-image-classification.zip/train \
    --output_directory data/input/hpa-1536.zip \
    --image_size 1536

# Resize test images to 768x768
python scripts/hpa_segmenter/create_cell_mask.py resize_image \
    --input_directory /kaggle/input/hpa-single-cell-image-classification/test \
    --output_directory data/input/hpa-768-test.zip \
    --image_size 768
# Resize test images to 1536x1536
python scripts/hpa_segmenter/create_cell_mask.py resize_image \
    --input_directory /kaggle/input/hpa-single-cell-image-classification/test \
    --output_directory data/input/hpa-1536-test.zip \
    --image_size 1536

You can specify a directory in a zip file in the same way as a normal directory.

Download Public HPA

Download all images in kaggle_2021.tsv in this dataset, resize them into 768x768 and 1536x1536, and archive them as data/input/hpa-public-768.zip and data/input/hpa-public-1536.zip.

Create Cell Mask

# Create cell masks for the Kaggle train set with 1536x1536
python scripts/hpa_segmenter/create_cell_mask.py create_cell_mask \
    --input_directory data/input/hpa-1536.zip \
    --output_directory data/input/hpa-1536-mask-v2.zip \
    --label_cell_scale_factor 1.0

# Resize the masks to 768x768
python scripts/hpa_segmenter/create_cell_mask.py resize_cell_mask \
    --input_directory data/input/hpa-1536-mask-v2.zip \
    --output_directory data/input/hpa-768-mask-v2-from-1536.zip \
    --image_size 768

# Create cell masks for the Public HPA dataset with 1536x1536
python scripts/hpa_segmenter/create_cell_mask.py create_cell_mask \
    --input_directory data/input/hpa-public-1536.zip/hpa-public-1536 \
    --output_directory data/input/hpa-public-1536-mask-v2.zip \
    --label_cell_scale_factor 1.0

# Resize the masks to 768x768
python scripts/hpa_segmenter/create_cell_mask.py resize_cell_mask \
    --input_directory data/input/hpa-public-1536-mask-v2.zip \
    --output_directory data/input/hpa-public-768-mask-v2-from-1536.zip \
    --image_size 768

# Create cell masks for the test set with the original resolution
# Run with `--label_cell_scale_factor = 0.5` to save inference time
python scripts/hpa_segmenter/create_cell_mask.py create_cell_mask \
    --input_directory /kaggle/input/hpa-single-cell-image-classification/test \
    --output_directory data/input/hpa-test-mask-v2.zip \
    --label_cell_scale_factor 0.5

# Resize the masks to 1536x1536
python scripts/hpa_segmenter/create_cell_mask.py resize_cell_mask \
    --input_directory data/input/hpa-test-mask-v2.zip \
    --output_directory data/input/hpa-test-mask-v2-1536.zip \
    --image_size 1536

# Resize the masks to 768x768
python scripts/hpa_segmenter/create_cell_mask.py resize_cell_mask \
    --input_directory data/input/hpa-test-mask-v2.zip \
    --output_directory data/input/hpa-test-mask-v2-768.zip \
    --image_size 768

Create Input for Cell-level Classifier

# Create cell-level inputs for the Kaggle train set using 768x768 images as fixed scale image.
python scripts/hap_segmenter/create_cell_mask.py crop_and_resize_cell \
    --image_directory data/input/hpa-768768.zip \
    --cell_mask_directory data/input/hpa-768-mask-v2-from-1536.zip \
    --output_directory data/input/hpa-cell-crop-v2-192-from-768.zip \
    --image_size 192

# Create cell-level inputs for the Public HPA dataset using 768x768 images as fixed scale image.
python scripts/hap_segmenter/create_cell_mask.py crop_and_resize_cell \
    --image_directory data/input/hpa-public-768.zip \
    --cell_mask_directory data/input/hpa-public-768-mask-v2-from-1536.zip \
    --output_directory data/input/hpa-public-cell-crop-v2-192-from-768.zip \
    --image_size 192

# Create cell-level inputs for the Kaggle train set using 1536x1536 images as fixed scale image.
python scripts/hap_segmenter/create_cell_mask.py crop_and_resize_cell \
    --image_directory data/input/hpa-1536.zip \
    --cell_mask_directory data/input/hpa-1536-mask-v2.zip \
    --output_directory data/input/hpa-cell-crop-v2-192-from-1536.zip \
    --image_size 192

# Create cell-level inputs for the Public HPA dataset using 1536x1536 images as fixed scale image.
python scripts/hap_segmenter/create_cell_mask.py crop_and_resize_cell \
    --image_directory data/input/hpa-public-1536.zip \
    --cell_mask_directory data/input/hpa-public-1536-mask-v2.zip \
    --output_directory data/input/hpa-public-cell-crop-v2-192-from-1536.zip \
    --image_size 192

# Create cell-level inputs for the test set using 768x768 images as fixed scale image.
python scripts/hpa_segmenter/create_cell_mask.py crop_and_resize_cell \
    --image_directory data/input/hpa-768768-test.zip \
    --cell_mask_directory data/input/hpa-test-mask-v2-768.zip \
    --output_directory data/input/hpa-test-cell-crop-v2-192-from-768.zip \
    --image_size 192

# Create cell-level inputs for the test set using 1536x1536 images as fixed scale image.
python scripts/hpa_segmenter/create_cell_mask.py crop_and_resize_cell \
    --image_directory data/input/hpa-1536-test.zip \
    --cell_mask_directory data/input/hpa-test-mask-v2-1536.zip \
    --output_directory data/input/hpa-test-cell-crop-v2-192-from-1536.zip \
    --image_size 192

Training

# Train image-level classifier
python scripts/cam_consistency_training/run.py train \
    --config_path scripts/cam_consistency_training/configs/${CONFIG_NAME}.yaml

# Train cell-level classifier
python scripts/cell_crop/run.py train \
    --config_path scripts/cell_crop/configs/${CONFIG_NAME}.yaml

If you want to train on multiple GPUs, use a launcher like torch.distributed.launch and pass --local_rank option. You can override the fields in the config by passing an argument like field_name=${value} (e.g. fold_index=1). We trained 5 folds for all models used in the final submission pipeline. The config files are located in scripts/cam_consistency_training/configs and scripts/cell_crop/configs. We trained the models in the following order.

  1. scripts/cam_consistency_training/configs/eff-b2-focal-alpha1-cutmix-pubhpa-maskv2.yaml
  2. scripts/cam_consistency_training/configs/eff-b5-focal-alpha1-cutmix-pubhpa-maskv2.yaml
  3. scripts/cam_consistency_training/configs/eff-b7-focal-alpha1-cutmix-pubhpa-maskv2.yaml
  4. scripts/cam_consistency_training/configs/eff-b2-cutmix-pubhpa-768-to-1536.yaml
  5. Do predict_valid and concat_valid_predictions (described below) for each model and save the average of the output files under data/working/consistency_training/b2-1536-b2-b5-b7-768-avg/.
  6. scripts/cam_consistency_training/configs/eff-b2-focal-stage2-b2b2b5b7avg.yaml
  7. scripts/cell_crop/configs/resnest50-bce-from768-cutmix-softpl.yaml
  8. Do predict_valid and concat_valid_predictions for each model and save the average of the output files under data/working/image-level-and-cell-crop-both-5folds/.
  9. scripts/cam_consistency_training/configs/eff-b2-focal-stage3.yaml
  10. scripts/cam_consistency_training/configs/eff-b2-focal-stage3-cos.yaml
  11. scripts/cell_crop/configs/resnest50-bce-from768-stage3.yaml
  12. scripts/cell_crop/configs/resnest50-bce-from1536-stage3-cos.yaml

Inference

Validation Set

# Image-level classifier inference
python scripts/cam_consistency_training/run.py predict_valid \
    --config_path scripts/cam_consistency_training/configs/${CONFIG_NAME}.yaml

# Cell-level classifier inference
python scripts/cell_crop/run.py predict_valid \
    --config_path scripts/cell_crop/configs/${CONFIG_NAME}.yaml

# Concatenate the predictions for each fold to obtain the OOF prediction for the entire training data
python scripts/cam_consistency_training/run.py concat_valid_predictions \
    --config_path scripts/cam_consistency_training/configs/${CONFIG_NAME}.yaml
python scripts/cell_crop/run.py concat_valid_predictions \
    --config_path scripts/cell_crop/configs/${CONFIG_NAME}.yaml

Test Set

# Image-level classifier inference
python scripts/cam_consistency_training/run.py predict_test \
    --config_path scripts/cam_consistency_training/configs/${CONFIG_NAME}.yaml

# Cell-level classifier inference
python scripts/cell_crop/run.py predict_test \
    --config_path scripts/cell_crop/configs/${CONFIG_NAME}.yaml

# Make our final submission with post-processing
python scripts/average_predictions.py \
    --orig_size_cell_mask_directory data/input/hpa-test-mask-v2.zip \
    "data/working/consistency_training/eff-b2-focal-stage3/0" \
    "data/working/consistency_training/eff-b2-focal-stage3/1" \
    "data/working/consistency_training/eff-b2-focal-stage3/2" \
    "data/working/consistency_training/eff-b2-focal-stage3/3" \
    "data/working/consistency_training/eff-b2-focal-stage3/4" \
    "data/working/consistency_training/eff-b2-focal-stage3-cos/0" \
    "data/working/consistency_training/eff-b2-focal-stage3-cos/1" \
    "data/working/consistency_training/eff-b2-focal-stage3-cos/2" \
    "data/working/consistency_training/eff-b2-focal-stage3-cos/3" \
    "data/working/consistency_training/eff-b2-focal-stage3-cos/4" \
    "data/working/cell_crop/resnest50-bce-from768-stage3/0" \
    "data/working/cell_crop/resnest50-bce-from768-stage3/1" \
    "data/working/cell_crop/resnest50-bce-from768-stage3/2" \
    "data/working/cell_crop/resnest50-bce-from768-stage3/3" \
    "data/working/cell_crop/resnest50-bce-from768-stage3/4" \
    "data/working/cell_crop/resnest50-bce-from1536-stage3-cos/0" \
    "data/working/cell_crop/resnest50-bce-from1536-stage3-cos/1" \
    "data/working/cell_crop/resnest50-bce-from1536-stage3-cos/2" \
    "data/working/cell_crop/resnest50-bce-from1536-stage3-cos/3" \
    "data/working/cell_crop/resnest50-bce-from1536-stage3-cos/4" \
    --edge_area_threshold 80000 --center_area_threshold 32000

Use the code on Kaggle Notebook

Use docker to zip the source code and the wheels of the dependencies and upload them as a dataset.

docker run --rm -it -v /path/to/this/repo:/tmp/workspace -w /tmp/workspace/ gcr.io/kaggle-images/python bash ./build_zip.sh

In Kaggle Notebook, when you copy the code as shown below, you can run it the same way as your local environment.

# Make a working directory
!mkdir -p /kaggle/tmp

# Change the current directory
cd /kaggle/tmp

# Copy source code from the uploaded dataset
!cp -r /kaggle/input/<your-dataset-name>/* .

# You can use it as well as local environment
!python scripts/hpa_segmenter/create_cell_mask.py create_cell_mask ...
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
Implement slightly different caffe-segnet in tensorflow

Tensorflow-SegNet Implement slightly different (see below for detail) SegNet in tensorflow, successfully trained segnet-basic in CamVid dataset. Due t

Tseng Kuan Lun 364 Oct 27, 2022
StorSeismic: An approach to pre-train a neural network to store seismic data features

StorSeismic: An approach to pre-train a neural network to store seismic data features This repository contains codes and resources to reproduce experi

Seismic Wave Analysis Group 11 Dec 05, 2022
An algorithm study of the 6th iOS 10 set of Boost Camp Web Mobile

알고리즘 스터디 🔥 부스트캠프 웹모바일 6기 iOS 10조의 알고리즘 스터디 입니다. 개인적인 사정 등으로 S034, S055만 참가하였습니다. 스터디 목적 상진: 코테 합격 + 부캠끝나고 아침에 일어나기 위해 필요한 사이클 기완: 꾸준하게 자리에 앉아 공부하기 +

2 Jan 11, 2022
B-cos Networks: Attention is All we Need for Interpretability

Convolutional Dynamic Alignment Networks for Interpretable Classifications M. Böhle, M. Fritz, B. Schiele. B-cos Networks: Alignment is All we Need fo

58 Dec 23, 2022
LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021

LTR_CrossEncoder: Legal Text Retrieval Zalo AI Challenge 2021 We propose a cross encoder model (LTR_CrossEncoder) for information retrieval, re-retrie

Xuan Hieu Duong 7 Jan 12, 2022
Code release for Local Light Field Fusion at SIGGRAPH 2019

Local Light Field Fusion Project | Video | Paper Tensorflow implementation for novel view synthesis from sparse input images. Local Light Field Fusion

1.1k Dec 27, 2022
Codes and scripts for "Explainable Semantic Space by Grounding Languageto Vision with Cross-Modal Contrastive Learning"

Visually Grounded Bert Language Model This repository is the official implementation of Explainable Semantic Space by Grounding Language to Vision wit

17 Dec 17, 2022
Human Detection - Pedestrian Detection using OpenCV Python

Pedestrian Detection using OpenCV Python Follow us on Instagram for Machine Lear

Hrishikesh Dutta 1 Jan 23, 2022
details on efforts to dump the Watermelon Games Paprium cart

Reminder, if you like these repos, fork them so they don't disappear https://github.com/ArcadeHustle/WatermelonPapriumDump/fork Big thanks to Fonzie f

Hustle Arcade 29 Dec 11, 2022
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
Semantic Edge Detection with Diverse Deep Supervision

Semantic Edge Detection with Diverse Deep Supervision This repository contains the code for our IJCV paper: "Semantic Edge Detection with Diverse Deep

Yun Liu 12 Dec 31, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Pytorch implementation of paper Semi-supervised Knowledge Transfer for Deep Learning from Private Training Data

Hrishikesh Kamath 31 Nov 20, 2022
✅ How Robust are Fact Checking Systems on Colloquial Claims?. In NAACL-HLT, 2021.

How Robust are Fact Checking Systems on Colloquial Claims? Official PyTorch implementation of our NAACL paper: Byeongchang Kim*, Hyunwoo Kim*, Seokhee

Byeongchang Kim 19 Mar 15, 2022
Several simple examples for popular neural network toolkits calling custom CUDA operators.

Neural Network CUDA Example Several simple examples for neural network toolkits (PyTorch, TensorFlow, etc.) calling custom CUDA operators. We provide

WeiYang 798 Jan 01, 2023
[ECCV'20] Convolutional Occupancy Networks

Convolutional Occupancy Networks Paper | Supplementary | Video | Teaser Video | Project Page | Blog Post This repository contains the implementation o

622 Dec 30, 2022
Final term project for Bayesian Machine Learning Lecture (XAI-623)

Mixquality_AL Final Term Project For Bayesian Machine Learning Lecture (XAI-623) Youtube Link The presentation is given in YoutubeLink Problem Formula

JeongEun Park 3 Jan 18, 2022
Edison AT is software Depression Assistant personal.

Edison AT Edison AT is software / program Depression Assistant personal. Feature: Analyze emotional real-time from face. Audio Edison(Comingsoon relea

Ananda Rauf 2 Apr 24, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022