A testcase generation tool for Persistent Memory Programs.

Overview

PMFuzz

PMFuzz

PMFuzz is a testcase generation tool to generate high-value tests cases for PM testing tools (XFDetector, PMDebugger, PMTest and Pmemcheck)

If you find PMFuzz useful in your research, please cite:

Sihang Liu, Suyash Mahar, Baishakhi Ray, and Samira Khan
PMFuzz: Test Case Generation for Persistent Memory Programs
The International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2021

BibTex

@inproceedings{liu2021pmfuzz,
  title={PMFuzz: Test Case Generation for Persistent Memory Programs},
  author={Liu, Sihang and Mahar, Suyash and Ray, Baishakhi and Khan, Samira},
  booktitle={Proceedings of the Twenty-sixth International Conference on Architectural Support for Programming Languages and Operating Systems},
  year={2021}
}

Dependencies

PMFuzz was tested using the following environment configuration, other versions may work:

  1. Ubuntu 18.04
  2. NDCTL v64 or higher
  3. libunwind (libunwind-dev)
  4. libini-config (libini-config-dev)
  5. Python 3.8
  6. GNUMake >= 3.82
  7. Kernel version 5.4
  8. Anaconda or virtualenv (recommended)

For compiling documentation:

  1. doxygen
  2. pdflatex
  3. doxypypy

Compiling PMFuzz

Build PMFuzz and AFL

make -j $(nproc --all)

Install PMFuzz

sudo make install

Now, pmfuzz-fuzz should be available as an executable:

pmfuzz-fuzz --help

The following man pages are also installed:

man 1 pmfuzz-fuzz
man 7 libpmfuzz
man 7 libfakepmfuzz

To uninstall PMFuzz, run the following command:

sudo make uninstall

Compiling PMFuzz Docker image

PMFuzz also comes with a docker file to automatically configure and install pmfuzz. To build the image, run the following command from the root of the repository:

docker build -t pmfuzz-v0.9 .

The raw dockerfile is also available here: /Dockerfile.

Using PMFuzz

After installing PMFuzz, use annotations by including the PMFuzz header file:

#include "pmfuzz/pmfuzz.h"

int main() {
	printf("PMFuzz version: %s\n", pmfuzz_version_str);
}

The program would then have to be linked with either libpmfuzz or libfakepmfuzz. e.g.,

example: example.o
	$(CXX) -o $@ $< -lfakepmfuzz # or -lpmfuzz

To compile a program linked with libpmfuzz, you'd need to use PMFuzz's AFL++ version of gcc/clang. Check build/bin after building PMFuzz.

For debugging, libfakepmfuzz exports the same interface but no actual tracking mechanism, allowing it to compile with any C/C++ compiler.

An example program is available in src/example. The original ASPLOS 2021 artifact is available at https://github.com/Systems-ShiftLab/pmfuzz_asplos21_ae.

libpmfuzz API is available at docs/libpmfuzz.7.md

Compiling Documentation

Run make docs from the root, and all the documentation will be linked in the docs/ directory.

Some man pages are available as markdown formatted files:

  1. docs/libpmfuzz.7.md
  2. docs/pmfuzz-fuzz.1.md

Running custom configuration

PMFuzz uses a YML based configuration to set different parameters for fuzzing, to write a custom configuration, please follow one of the existing examples in src/pmfuzz/configs/examples/ directory.

More information on PMFuzz's syntax is here.

Modifying PMFuzz

PMFuzz was written in a modular way allowing part of PMFuzz's components to be swapped with something that has the same interface. If you have a question please open a new issue or a discussion.

Other useful information

Env variables

NOTE: If a variable doesn't have a possible value next to it, that variable would be enabled by setting it to any non-empty value (including 0).

  1. USE_FAKE_MMAP=(0,1): Enables fake mmap which mounts an image in the volaile memory.
  2. PMEM_MMAP_HINT=<addr>: Address of the mount point of the pool.
  3. ENABLE_CNST_IMG=(0,1): Disables default PMDK's behaviour that generates non-identical images for same input.
  4. FI_MODE=(<empty or unset>|IMG_GEN|IMG_REP): See libpmfuzz.c
  5. FAILURE_LIST=<path-to-output-file>: See libpmfuzz.c
  6. PMFUZZ_DEBUG=(0,1): Enables debug output from libpmfuzz
  7. ENABLE_PM_PATH: Enables deep paths in PMFuzz
  8. GEN_ALL_CS: Partially disables the probabilistic generation of crash sites and more of them are generated from libpmfuzz.c
  9. IMG_CREAT_FINJ: Disables the probabilistic generation of crash sites and all of them are generated from libpmfuzz.c
  10. PMFUZZ_SKIP_TC_CHECK: Disable testcase size check in AFL++
  11. PRIMITIVE_BASELINE_MODE: Makes workload delete image on start if the pool exists

Adding git hook for development

Following command adds a pre-commit hook to check if the tests pass:

git config --local core.hooksPath .githooks/

Reasons for Common errors

1. FileNotFoundError for instance's pid file

Raised when AFL cannot bind to a free core or no core is free.

2. Random tar command failed

Check if no free disk space is left on the device

3. shmget (2): No space left on device

Run:

ipcrm -a

Warning: This removes all user owned shared memory segments, don't run with superuser privilege or on a machine with other critical applications running.

Licensing

PMFuzz is licensed under BSD-3-clause except noted otherwise.

PMFuzz uses of the following open-source software:

  1. Preeny (license)
    Preeny was modified to fix a bug in desock. All changes are contained in vendor/pathes/preeny_path
  2. AFL++ (license)
    AFL++ was modified to include support for persistent memory tracking for PMFuzz.
Owner
Systems Research at ShiftLab
Systems Research at ShiftLab
Get the partition that a file belongs and the percentage of space that consumes

tinos_eisai_sy Get the partition that a file belongs and the percentage of space that consumes (works only with OSes that use the df command) tinos_ei

Konstantinos Patronas 6 Jan 24, 2022
Mixed Transformer UNet for Medical Image Segmentation

MT-UNet Update 2021/11/19 Thank you for your interest in our work. We have uploaded the code of our MTUNet to help peers conduct further research on i

dotman 92 Dec 25, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction. Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe,

stanley 152 Dec 16, 2022
Code for paper Novel View Synthesis via Depth-guided Skip Connections

Novel View Synthesis via Depth-guided Skip Connections Code for paper Novel View Synthesis via Depth-guided Skip Connections @InProceedings{Hou_2021_W

8 Mar 14, 2022
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
an Evolutionary Algorithm assisted GAN

EvoGAN an Evolutionary Algorithm assisted GAN ckpts

3 Oct 09, 2022
Generate image analogies using neural matching and blending

neural image analogies This is basically an implementation of this "Image Analogies" paper, In our case, we use feature maps from VGG16. The patch mat

Adam Wentz 3.5k Jan 08, 2023
Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction".

TGIN Tensorflow implementation of our method: "Triangle Graph Interest Network for Click-through Rate Prediction". Files in the folder dataset/ electr

Alibaba 21 Dec 21, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022
A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

A Jupyter notebook to play with NVIDIA's StyleGAN3 and OpenAI's CLIP for a text-based guided image generation.

Eugenio Herrera 175 Dec 29, 2022
PiRapGenerator - Make anyone rap the digits of pi

PiRapGenerator Make anyone rap the digits of pi (sample files are of Ted Nivison

7 Oct 02, 2022
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022
Official Code Implementation of the paper : XAI for Transformers: Better Explanations through Conservative Propagation

Official Code Implementation of The Paper : XAI for Transformers: Better Explanations through Conservative Propagation For the SST-2 and IMDB expermin

Ameen Ali 23 Dec 30, 2022
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
Code and datasets for the paper "Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction" (RA-L, 2021)

Combining Events and Frames using Recurrent Asynchronous Multimodal Networks for Monocular Depth Prediction This is the code for the paper Combining E

Robotics and Perception Group 69 Dec 26, 2022
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
[PyTorch] Official implementation of CVPR2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency". https://arxiv.org/abs/2103.05465

PointDSC repository PyTorch implementation of PointDSC for CVPR'2021 paper "PointDSC: Robust Point Cloud Registration using Deep Spatial Consistency",

153 Dec 14, 2022