Implementation of TimeSformer, a pure attention-based solution for video classification

Overview

TimeSformer - Pytorch

Implementation of TimeSformer, a pure and simple attention-based solution for reaching SOTA on video classification. This repository will only house the best performing variant, 'Divided Space-Time Attention', which is nothing more than attention along the time axis before the spatial.

Install

$ pip install timesformer-pytorch

Usage

import torch
from timesformer_pytorch import TimeSformer

model = TimeSformer(
    dim = 512,
    image_size = 224,
    patch_size = 16,
    num_frames = 8,
    num_classes = 10,
    depth = 12,
    heads = 8,
    dim_head =  64,
    attn_dropout = 0.1,
    ff_dropout = 0.1
)

video = torch.randn(2, 8, 3, 224, 224) # (batch x frames x channels x height x width)
pred = model(video) # (2, 10)

Citations

@misc{bertasius2021spacetime,
    title   = {Is Space-Time Attention All You Need for Video Understanding?}, 
    author  = {Gedas Bertasius and Heng Wang and Lorenzo Torresani},
    year    = {2021},
    eprint  = {2102.05095},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
Comments
  • How to deal with varying length video? Thanks

    How to deal with varying length video? Thanks

    Dear all, I am wondering if TimeSformer can handle different videos with diverse lengths? Is it possible to use mask as the original Transformer? Any ideas, thanks a lot.

    opened by junyongyou 2
  • fix runtime error in SpaceTime Attention

    fix runtime error in SpaceTime Attention

    There is a shape mismatch error in Attention. When we splice out the classification token from the first token of each sequence in q, k and v, the shape becomes (batch_size * num_heads, num_frames * num_patches - 1, head_dim). Then we try to reshape the tensor by taking out a factor of num_frames or num_patches (depending on whether it is space or time attention) from dimension 1. That doesn't work because we subtracted out the classification token.

    I found that performing the rearrange operation before splicing the token fixes the issue.

    I recreate the problem and illustrate the solution in this notebook: https://colab.research.google.com/drive/1lHFcn_vgSDJNSqxHy7rtqhMVxe0nUCMS?usp=sharing.

    By the way, thank you to @lucidrains; all of your implementations on attention-based models are helping me more than you know.

    opened by adam-mehdi 1
  • Update timesformer_pytorch.py

    Update timesformer_pytorch.py

    fixing issue for scaling

    File "/home/aarti9/.local/lib/python3.6/site-packages/timesformer_pytorch/timesformer_pytorch.py", line 82, in forward q *= self.scale

    RuntimeError: Output 0 of ViewBackward is a view and is being modified inplace. This view is an output of a function that returns multiple views. Inplace operators on such views is forbidden. You should replace the inplace operation by an out-of-place one.

    opened by aarti9 0
  • Fine-tune with new datasets

    Fine-tune with new datasets

    Thank you so much for your great effort. I can predict the images using the given .py files. But, I couldn't find train.py files, so how to fine-tune the network with new datasets? where should i define the image samples of the new dataset ?

    opened by Jeba-create 0
  • problem in timesformer_pytorch.py

    problem in timesformer_pytorch.py

    start from line 182 video = rearrange(video, 'b f c (h p1) (w p2) -> b (f h w) (p1 p2 c)', p1 = p, p2 = p) i think this should be video = rearrange(video, 'b f c (hp p1) (wp p2) -> b (f hp wp) (p1 p2 c)', p1 = p, p2 = p)

    opened by Weizhongjin 2
  • Imagenet Pretrained Weights

    Imagenet Pretrained Weights

    Thanks for the work! In their paper they say For all our experiments, we adopt the “Base” ViT model architecture (Dosovitskiy et al., 2020) pretrained on ImageNet.

    I know that you said the official weights trained on kinetics and such are not officially released yet. However, I am not interested in those but am actually in need of the initial weights of the network just based on ViT Imagenet pretraining. I need to train this implementation of yours starting from those. From what it looks like, you don't have weights for this implementation that come from imagenet pretraining, do you?

    opened by RaivoKoot 5
Owner
Phil Wang
Working with Attention. It's all we need.
Phil Wang
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
Visual Adversarial Imitation Learning using Variational Models (VMAIL)

Visual Adversarial Imitation Learning using Variational Models (VMAIL) This is the official implementation of the NeurIPS 2021 paper. Project website

14 Nov 18, 2022
Implementation of SiameseXML (ICML 2021)

SiameseXML Code for SiameseXML: Siamese networks meet extreme classifiers with 100M labels Best Practices for features creation Adding sub-words on to

Extreme Classification 35 Nov 06, 2022
This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans

This repository contains the code for TABS, a 3D CNN-Transformer hybrid automated brain tissue segmentation algorithm using T1w structural MRI scans. TABS relies on a Res-Unet backbone, with a Vision

6 Nov 07, 2022
A vanilla 3D face modeling on pose-invariant and multi-lightning image data

3D-Face-Modeling A vanilla 3D face modeling on pose-invariant and multi-lightning image data Table of Contents Background Install Usage Contributing B

Haochen Zhang 1 Mar 12, 2022
Weakly Supervised End-to-End Learning (NeurIPS 2021)

WeaSEL: Weakly Supervised End-to-end Learning This is a PyTorch-Lightning-based framework, based on our End-to-End Weak Supervision paper (NeurIPS 202

Auton Lab, Carnegie Mellon University 131 Jan 06, 2023
CLIP (Contrastive Language–Image Pre-training) for Italian

Italian CLIP CLIP (Radford et al., 2021) is a multimodal model that can learn to represent images and text jointly in the same space. In this project,

Italian CLIP 114 Dec 29, 2022
Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet

Attack classification models with transferability, black-box attack; unrestricted adversarial attacks on imagenet, CVPR2021 安全AI挑战者计划第六期:ImageNet无限制对抗攻击 决赛第四名(team name: Advers)

51 Dec 01, 2022
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
Stitch it in Time: GAN-Based Facial Editing of Real Videos

STIT - Stitch it in Time [Project Page] Stitch it in Time: GAN-Based Facial Edit

1.1k Jan 04, 2023
Pytorch-Swin-Unet-V2 - a modified version of Swin Unet based on Swin Transfomer V2

Swin Unet V2 Swin Unet V2 is a modified version of Swin Unet arxiv based on Swin

Chenxu Peng 26 Dec 03, 2022
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

StarClouds 1.2k Dec 21, 2022
RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality?

RaftMLP RaftMLP: How Much Can Be Done Without Attention and with Less Spatial Locality? By Yuki Tatsunami and Masato Taki (Rikkyo University) [arxiv]

Okojo 20 Aug 31, 2022
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose

WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose Yijun Zhou and James Gregson - BMVC2020 Abstract: We present an end-to-end head-pos

368 Dec 26, 2022
Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging

Boosting Monocular Depth Estimation Models to High-Resolution via Content-Adaptive Multi-Resolution Merging This repository contains an implementation

Computational Photography Lab @ SFU 1.1k Jan 02, 2023
MT-GAN-PyTorch - PyTorch Implementation of Learning to Transfer: Unsupervised Domain Translation via Meta-Learning

MT-GAN-PyTorch PyTorch Implementation of AAAI-2020 Paper "Learning to Transfer: Unsupervised Domain Translation via Meta-Learning" Dependency: Python

29 Oct 19, 2022
Atomistic Line Graph Neural Network

Table of Contents Introduction Installation Examples Pre-trained models Quick start using colab JARVIS-ALIGNN webapp Peformances on a few datasets Use

National Institute of Standards and Technology 91 Dec 30, 2022
Machine Learning Models were applied to predict the mass of the brain based on gender, age ranges, and head size.

Brain Weight in Humans Variations of head sizes and brain weights in humans Kaggle dataset obtained from this link by Anubhab Swain. Image obtained fr

Anne Livia 1 Feb 02, 2022
Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Yet Another Robotics and Reinforcement (YARR) learning framework for PyTorch.

Stephen James 51 Dec 27, 2022