Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection

Overview

CP-Cluster

Confidence Propagation Cluster aims to replace NMS-based methods as a better box fusion framework in 2D/3D Object detection, Instance Segmentation:

Confidence Propagation Cluster: Unleash the Full Potential of Object Detectors, Yichun Shen*, Wanli Jiang*, Zhen Xu, Rundong Li, Junghyun Kwon, Siyi Li,

Contact: [email protected]. Welcome for any questions and comments!

Abstract

It’s been a long history that most object detection methods obtain objects by using the non-maximum suppression(NMS) and its improved versions like Soft-NMS to remove redundant bounding boxes. We challenge those NMS-based methods from three aspects: 1) The bounding box with highest confidence value may not be the true positive having the biggest overlap with the ground-truth box. 2) Not only suppression is required for redundant boxes, but also confidence enhancement is needed for those true positives. 3) Sorting candidate boxes by confidence values is not necessary so that full parallelism is achievable.

Inspired by belief propagation (BP), we propose the Confidence Propagation Cluster (CP-Cluster) to replace NMS-based methods, which is fully parallelizable as well as better in accuracy. In CP-Cluster, we borrow the message passing mechanism from BP to penalize redundant boxes and enhance true positives simultaneously in an iterative way until convergence. We verified the effectiveness of CP-Cluster by applying it to various mainstream detectors such as FasterRCNN, SSD, FCOS, YOLOv3, YOLOv5, Centernet etc. Experiments on MS COCO show that our plug and play method, without retraining detectors, is able to steadily improve average mAP of all those state-of-the-art models with a clear margin from 0.2 to 1.9 respectively when compared with NMS-based methods.

Highlights

  • Better accuracy: Compared with all previous NMS-based methods, CP-Cluster manages to achieve better accuracy

  • Fully parallelizable: No box sorting is required, and each candidate box can be handled separately when propagating confidence messages

Main results

Detectors from MMDetection on COCO val/test-dev

Method NMS Soft-NMS CP-Cluster
FRcnn-fpn50 38.4 / 38.7 39.0 / 39.2 39.2 / 39.4
Yolov3 33.5 / 33.5 33.6 / 33.6 34.1 / 34.1
Retina-fpn50 37.4 / 37.7 37.5 / 37.9 38.1 / 38.4
FCOS-X101 42.7 / 42.8 42.7 / 42.8 42.9 / 43.1
AutoAssign-fpn50 40.4 / 40.6 40.5 / 40.7 41.0 / 41.2

Yolov5(v6 model) on COCO val

Model NMS Soft-NMS CP-Cluster
Yolov5s 37.2 37.4 37.5
Yolov5m 45.2 45.3 45.5
Yolov5l 48.8 48.8 49.1
Yolov5x 50.7 50.8 51.0
Yolov5s_1280 44.5 50.8 44.8
Yolov5m_1280 51.1 51.1 51.3
Yolov5l_1280 53.6 53.7 53.8
Yolov5x_1280 54.7 54.8 55.0

Replace maxpooling with CP-Cluster for Centernet(Evaluated on COCO test-dev), where "flip_scale" means flip and multi-scale augmentations

Model maxpool Soft-NMS CP-Cluster
dla34 37.3 38.1 39.2
dla34_flip_scale 41.7 40.6 43.3
hg_104 40.2 40.6 41.1
hg_104_flip_scale 45.2 44.3 46.6

Instance Segmentation(MASK-RCNN, 3X models) from MMDetection on COCO test-dev

Box/Mask AP NMS Soft-NMS CP-Cluster
MRCNN_R50 41.5/37.7 42.0/37.8 42.1/38.0
MRCNN_R101 43.1/38.8 43.6/39.0 43.6/39.1
MRCNN_X101 44.6/40.0 45.2/40.2 45.2/40.2

Integrate into MMCV

Clone the mmcv repo from https://github.com/shenyi0220/mmcv (Cut down by 9/28/2021 from main branch with no extra modifications)

Copy the implementation of "cp_cluster_cpu" in src/nms.cpp to the mmcv nms code("mmcv/ops/csrc/pytorch/nms.cpp")

Borrow the "soft_nms_cpu" API by calling "cp_cluster_cpu" rather than orignal Soft-NMS implementations, so that modify the code like below:

@@ -186,8 +186,8 @@ Tensor softnms(Tensor boxes, Tensor scores, Tensor dets, float iou_threshold,
   if (boxes.device().is_cuda()) {
     AT_ERROR("softnms is not implemented on GPU");
   } else {
-    return softnms_cpu(boxes, scores, dets, iou_threshold, sigma, min_score,
-                       method, offset);
+    return cp_cluster_cpu(boxes, scores, dets, iou_threshold, min_score,
+                          offset, 0.8, 3);
   }
 }

Compile mmcv with source code

MMCV_WITH_OPS=1 pip install -e .

Reproduce Object Detection and Instance Segmentation in MMDetection

Make sure that the MMCV with CP-Cluster has been successfully installed.

Download code from https://github.com/shenyi0220/mmdetection (Cut down by 9/26/2021 from main branch with some config file modifications to call Soft-NMS/CP-Cluster), and install all the dependancies accordingly.

Download models from model zoo

Run below command to reproduce Faster-RCNN-r50-fpn-2x:

python tools/test.py ./configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.py ./checkpoints/faster_rcnn_r50_fpn_2x_coco_bbox_mAP-0.384_20200504_210434-a5d8aa15.pth --eval bbox

To check original metrics with NMS, you can switch the model config back to use default NMS.

To check Soft-NMS metrics, just re-compile with mmcv without CP-Cluster modifications.

Reproduce Yolov5

Make sure that the MMCV with CP-Cluster has been successfully installed.

Download code from https://github.com/shenyi0220/yolov5 (Cut down by 11/9/2021 from main branch, replacing the default torchvision.nms with CP-Cluster from mmcv), and install all the dependancies accordingly.

Run below command to reproduce the CP-Cluster exp with yolov5s-v6

python val.py --data coco.yaml --conf 0.001 --iou 0.6 --weights yolov5s.pt --batch-size 32

License

For the time being, this implementation is published with NVIDIA proprietary license, and the only usage of the source code is to reproduce the experiments of CP-Cluster. For any possible commercial use and redistribution of the code, pls contact [email protected]

Open Source Limitation

Due to proprietary and patent limitations, for the time being, only CPU implementation of CP-Cluster is open sourced. Full GPU-implementation and looser open source license are in application process.

Citation

If you find this project useful for your research, please use the following BibTeX entry.

@inproceedings{yichun2021cpcluster,
  title={Confidence Propagation Cluster: Unleash Full Potential of Object Detectors},
  author={Yichun Shen, Wanli Jiang, Zhen Xu, Rundong Li, Junghyun Kwon, Siyi Li},
  booktitle={arXiv preprint arXiv:2112.00342},
  year={2021}
}
Owner
Yichun Shen
Yichun Shen
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
nfelo: a power ranking, prediction, and betting model for the NFL

nfelo nfelo is a power ranking, prediction, and betting model for the NFL. Nfelo take's 538's Elo framework and further adapts it for the NFL, hence t

6 Nov 22, 2022
[NeurIPS 2021]: Are Transformers More Robust Than CNNs? (Pytorch implementation & checkpoints)

Are Transformers More Robust Than CNNs? Pytorch implementation for NeurIPS 2021 Paper: Are Transformers More Robust Than CNNs? Our implementation is b

Yutong Bai 145 Dec 01, 2022
PyTorch code for the ICCV'21 paper: "Always Be Dreaming: A New Approach for Class-Incremental Learning"

Always Be Dreaming: A New Approach for Data-Free Class-Incremental Learning PyTorch code for the ICCV 2021 paper: Always Be Dreaming: A New Approach f

49 Dec 21, 2022
Github project for Attention-guided Temporal Coherent Video Object Matting.

Attention-guided Temporal Coherent Video Object Matting This is the Github project for our paper Attention-guided Temporal Coherent Video Object Matti

71 Dec 19, 2022
PyTorch implementation of SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching

SMODICE: Versatile Offline Imitation Learning via State Occupancy Matching This is the official PyTorch implementation of SMODICE: Versatile Offline I

Jason Ma 14 Aug 30, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
Official code for the CVPR 2021 paper "How Well Do Self-Supervised Models Transfer?"

How Well Do Self-Supervised Models Transfer? This repository hosts the code for the experiments in the CVPR 2021 paper How Well Do Self-Supervised Mod

Linus Ericsson 157 Dec 16, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
Official Repository for our ECCV2020 paper: Imbalanced Continual Learning with Partitioning Reservoir Sampling

Imbalanced Continual Learning with Partioning Reservoir Sampling This repository contains the official PyTorch implementation and the dataset for our

Chris Dongjoo Kim 40 Sep 18, 2022
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification

This repo holds the codes of our paper: Adaptive Dropblock Enhanced GenerativeAdversarial Networks for Hyperspectral Image Classification, which is ac

Feng Gao 17 Dec 28, 2022
Repository for the NeurIPS 2021 paper: "Exploiting Domain-Specific Features to Enhance Domain Generalization".

meta-Domain Specific-Domain Invariant (mDSDI) Source code implementation for the paper: Manh-Ha Bui, Toan Tran, Anh Tuan Tran, Dinh Phung. "Exploiting

VinAI Research 12 Nov 25, 2022
Hypercomplex Neural Networks with PyTorch

HyperNets Hypercomplex Neural Networks with PyTorch: this repository would be a container for hypercomplex neural network modules to facilitate resear

Eleonora Grassucci 21 Dec 27, 2022
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
Assessing syntactic abilities of BERT

BERT-Syntax Assesing the syntactic abilities of BERT. What Evaluate Google's BERT-Base and BERT-Large models on the syntactic agreement datasets from

Yoav Goldberg 147 Aug 02, 2022
FFTNet vocoder implementation

Unofficial Implementation of FFTNet vocode paper. implement the model. implement tests. overfit on a single batch (sanity check). linearize weights fo

Eren Gölge 81 Dec 08, 2022
LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations

LIMEcraft LIMEcraft: Handcrafted superpixel selectionand inspection for Visual eXplanations The LIMEcraft algorithm is an explanatory method based on

MI^2 DataLab 4 Aug 01, 2022
Official Tensorflow implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation (ICLR 2020)

U-GAT-IT — Official TensorFlow Implementation (ICLR 2020) : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization fo

Junho Kim 6.2k Jan 04, 2023