Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

Overview

For SwapNet

Create a list.txt file containing all the images to process. This can be done with the GNU find command:

find path/to/input/folder -name '*.jpg' -o -name '*.png' > list.txt

Then run this to get the clothing segmentations

python evaluate_parsing_JPPNet-s2.py -d path/to/texture -l path/to/list.txt -o path/to/clothing

Joint Body Parsing & Pose Estimation Network (JPPNet)

Xiaodan Liang, Ke Gong, Xiaohui Shen, and Liang Lin, "Look into Person: Joint Body Parsing & Pose Estimation Network and A New Benchmark", T-PAMI 2018.

Introduction

JPPNet is a state-of-art deep learning methord for human parsing and pose estimation built on top of Tensorflow.

This novel joint human parsing and pose estimation network incorporates the multiscale feature connections and iterative location refinement in an end-to-end framework to investigate efficient context modeling and then enable parsing and pose tasks that are mutually beneficial to each other. This unified framework achieves state-of-the-art performance for both human parsing and pose estimation tasks.

This distribution provides a publicly available implementation for the key model ingredients reported in our latest paper which is accepted by T-PAMI 2018.

We simplify the network to solve human parsing by exploring a novel self-supervised structure-sensitive learning approach, which imposes human pose structures into the parsing results without resorting to extra supervision. There is also a public implementation of this self-supervised structure-sensitive JPPNet (SS-JPPNet).

Look into People (LIP) Dataset

The SSL is trained and evaluated on our LIP dataset for human parsing. Please check it for more model details. The dataset is also available at google drive and baidu drive.

Pre-trained models

We have released our trained models of JPPNet on LIP dataset at google drive and baidu drive.

Inference

  1. Download the pre-trained model and store in $HOME/checkpoint.
  2. Prepare the images and store in $HOME/datasets.
  3. Run evaluate_pose_JPPNet-s2.py for pose estimation and evaluate_parsing_JPPNet-s2.py for human parsing.
  4. The results are saved in $HOME/output

Training

  1. Download the pre-trained model and store in $HOME/checkpoint.
  2. Download LIP dataset or prepare your own data and store in $HOME/datasets.
  3. For LIP dataset, we have provided images, parsing labels, lists and the left-right flipping labels (labels_rev) for data augmentation. You need to generate the heatmaps of pose labels. We have provided a script for reference.
  4. Run train_JPPNet-s2.py to train the JPPNet with two refinement stages.
  5. Use evaluate_pose_JPPNet-s2.py and evaluate_parsing_JPPNet-s2.py to generate the results or evaluate the trained models.
  6. Note that the LIPReader class is only suit for labels in LIP for the left-right flipping augmentation. If you want to train on other datasets with different labels, you may have to re-write an image reader class.

Citation

If you use this code for your research, please cite our papers.

@article{liang2018look,
  title={Look into Person: Joint Body Parsing \& Pose Estimation Network and a New Benchmark},
  author={Liang, Xiaodan and Gong, Ke and Shen, Xiaohui and Lin, Liang},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
  year={2018},
  publisher={IEEE}
}

@InProceedings{Gong_2017_CVPR,
  author = {Gong, Ke and Liang, Xiaodan and Zhang, Dongyu and Shen, Xiaohui and Lin, Liang},
  title = {Look Into Person: Self-Supervised Structure-Sensitive Learning and a New Benchmark for Human Parsing},
  booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  month = {July},
  year = {2017}
}
Owner
Andrew Jong
Master's student at Carnegie Mellon in Robotics and AI. Studies multi-agent UAVs for wildfire applications.
Andrew Jong
Keras Implementation of The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation by (Simon Jégou, Michal Drozdzal, David Vazquez, Adriana Romero, Yoshua Bengio)

The One Hundred Layers Tiramisu: Fully Convolutional DenseNets for Semantic Segmentation: Work In Progress, Results can't be replicated yet with the m

Yad Konrad 196 Aug 30, 2022
Gym for multi-agent reinforcement learning

PettingZoo is a Python library for conducting research in multi-agent reinforcement learning, akin to a multi-agent version of Gym. Our website, with

Farama Foundation 1.6k Jan 09, 2023
This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

This repository contains numerical implementation for the paper Intertemporal Pricing under Reference Effects: Integrating Reference Effects and Consumer Heterogeneity.

Hansheng Jiang 6 Nov 18, 2022
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
EfficientDet (Scalable and Efficient Object Detection) implementation in Keras and Tensorflow

EfficientDet This is an implementation of EfficientDet for object detection on Keras and Tensorflow. The project is based on the official implementati

1.3k Dec 19, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images

Keras-ICNet [paper] Keras implementation of Real-Time Semantic Segmentation on High-Resolution Images. Training in progress! Requisites Python 3.6.3 K

Aitor Ruano 87 Dec 16, 2022
Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (CVAMD)

Is it Time to Replace CNNs with Transformers for Medical Images? Accepted at ICCV-2021: Workshop on Computer Vision for Automated Medical Diagnosis (C

Christos Matsoukas 80 Dec 27, 2022
Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs

Adversarial Robustness Comparison of Vision Transformer and MLP-Mixer to CNNs ArXiv Abstract Convolutional Neural Networks (CNNs) have become the de f

Philipp Benz 12 Oct 24, 2022
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
The code for our paper Semi-Supervised Learning with Multi-Head Co-Training

Semi-Supervised Learning with Multi-Head Co-Training (PyTorch) Abstract Co-training, extended from self-training, is one of the frameworks for semi-su

cmc 6 Dec 04, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

LingXY 4 Jun 20, 2022
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
CAST: Character labeling in Animation using Self-supervision by Tracking

CAST: Character labeling in Animation using Self-supervision by Tracking (Published as a conference paper at EuroGraphics 2022) Note: The CAST paper c

15 Nov 18, 2022
3D AffordanceNet is a 3D point cloud benchmark consisting of 23k shapes from 23 semantic object categories, annotated with 56k affordance annotations and covering 18 visual affordance categories.

3D AffordanceNet This repository is the official experiment implementation of 3D AffordanceNet benchmark. 3D AffordanceNet is a 3D point cloud benchma

49 Dec 01, 2022
Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks

Adversarially-Robust-Periphery Code + Data from the paper "Finding Biological Plausibility for Adversarially Robust Features via Metameric Tasks" by A

Anne Harrington 2 Feb 07, 2022