The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Overview

Easy-to-use toolkit for retrieval-based Chatbot

Recent Activity

  1. Our released RRS corpus can be found here.
  2. Our released BERT-FP post-training checkpoint for the RRS corpus can be found here.

How to Use

  1. Init the repo

    Before using the repo, please run the following command to init:

    # create the necessay folders
    python init.py
    
    # prepare the environment
    # if some package cannot be installed, just google and install it from other ways
    pip install -r requirements.txt
  2. train the model

    ./scripts/train.sh <dataset_name> <model_name> <cuda_ids>
  3. test the model [rerank]

    ./scripts/test_rerank.sh <dataset_name> <model_name> <cuda_id>
  4. test the model [recal]

    # different recall_modes are available: q-q, q-r
    ./scripts/test_recall.sh <dataset_name> <model_name> <cuda_id>
  5. inference the responses and save into the faiss index

    Somethings inference will missing data samples, please use the 1 gpu (faiss-gpu search use 1 gpu quickly)

    It should be noted that: 1. For writer dataset, use extract_inference.py script to generate the inference.txt 2. For other datasets(douban, ecommerce, ubuntu), just cp train.txt inference.txt. The dataloader will automatically read the test.txt to supply the corpus.

    # work_mode=response, inference the response and save into faiss (for q-r matching) [dual-bert/dual-bert-fusion]
    # work_mode=context, inference the context to do q-q matching
    # work_mode=gray, inference the context; read the faiss(work_mode=response has already been done), search the topk hard negative samples; remember to set the BERTDualInferenceContextDataloader in config/base.yaml
    ./scripts/inference.sh <dataset_name> <model_name> <cuda_ids>

    If you want to generate the gray dataset for the dataset:

    # 1. set the mode as the **response**, to generate the response faiss index; corresponding dataset name: BERTDualInferenceDataset;
    ./scripts/inference.sh <dataset_name> response <cuda_ids>
    
    # 2. set the mode as the **gray**, to inference the context in the train.txt and search the top-k candidates as the gray(hard negative) samples; corresponding dataset name: BERTDualInferenceContextDataset
    ./scripts/inference.sh <dataset_name> gray <cuda_ids>
    
    # 3. set the mode as the **gray-one2many** if you want to generate the extra positive samples for each context in the train set, the needings of this mode is the same as the **gray** work mode
    ./scripts/inference.sh <dataset_name> gray-one2many <cuda_ids>

    If you want to generate the pesudo positive pairs, run the following commands:

    # make sure the dual-bert inference dataset name is BERTDualInferenceDataset
    ./scripts/inference.sh <dataset_name> unparallel <cuda_ids>
  6. deploy the rerank and recall model

    # load the model on the cuda:0(can be changed in deploy.sh script)
    ./scripts/deploy.sh <cuda_id>

    at the same time, you can test the deployed model by using:

    # test_mode: recall, rerank, pipeline
    ./scripts/test_api.sh <test_mode> <dataset>
  7. test the recall performance of the elasticsearch

    Before testing the es recall, make sure the es index has been built:

    # recall_mode: q-q/q-r
    ./scripts/build_es_index.sh <dataset_name> <recall_mode>
    # recall_mode: q-q/q-r
    ./scripts/test_es_recall.sh <dataset_name> <recall_mode> 0
  8. simcse generate the gray responses

    # train the simcse model
    ./script/train.sh <dataset_name> simcse <cuda_ids>
    # generate the faiss index, dataset name: BERTSimCSEInferenceDataset
    ./script/inference_response.sh <dataset_name> simcse <cuda_ids>
    # generate the context index
    ./script/inference_simcse_response.sh <dataset_name> simcse <cuda_ids>
    # generate the test set for unlikelyhood-gen dataset
    ./script/inference_simcse_unlikelyhood_response.sh <dataset_name> simcse <cuda_ids>
    # generate the gray response
    ./script/inference_gray_simcse.sh <dataset_name> simcse <cuda_ids>
    # generate the test set for unlikelyhood-gen dataset
    ./script/inference_gray_simcse_unlikelyhood.sh <dataset_name> simcse <cuda_ids>
Owner
GMFTBY
Those who are crazy enough to think they can change the world are the ones who can.
GMFTBY
DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

The Official PyTorch Implementation of DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Shiyi Lan 3 Oct 15, 2021
This repo is duplication of jwyang/faster-rcnn.pytorch

Faster RCNN Pytorch This repo is duplication of jwyang/faster-rcnn.pytorch C/C++ code are removed and easier to study. Python 3.8.5 Ubuntu 20.04.1 LTS

Kim Jihwan 1 Jan 14, 2022
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020

XDVioDet Official implementation of "Not only Look, but also Listen: Learning Multimodal Violence Detection under Weak Supervision" ECCV2020. The proj

peng 64 Dec 12, 2022
NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

NitroFE is a Python feature engineering engine which provides a variety of modules designed to internally save past dependent values for providing continuous calculation.

100 Sep 28, 2022
Gym Threat Defense

Gym Threat Defense The Threat Defense environment is an OpenAI Gym implementation of the environment defined as the toy example in Optimal Defense Pol

Hampus Ramström 5 Dec 08, 2022
Collection of Docker images for ML/DL and video processing projects

Collection of Docker images for ML/DL and video processing projects. Overview of images Three types of images differ by tag postfix: base: Python with

OSAI 87 Nov 22, 2022
[CVPR2021] Look before you leap: learning landmark features for one-stage visual grounding.

LBYL-Net This repo implements paper Look Before You Leap: Learning Landmark Features For One-Stage Visual Grounding CVPR 2021. Getting Started Prerequ

SVIP Lab 45 Dec 12, 2022
IGCN : Image-to-graph convolutional network

IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi

Megumi Nakao 7 Oct 27, 2022
The codebase for our paper "Generative Occupancy Fields for 3D Surface-Aware Image Synthesis" (NeurIPS 2021)

Generative Occupancy Fields for 3D Surface-Aware Image Synthesis (NeurIPS 2021) Project Page | Paper Xudong Xu, Xingang Pan, Dahua Lin and Bo Dai GOF

xuxudong 97 Nov 10, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-grained Classification".

HA-in-Fine-Grained-Classification This repo includes the CUB-GHA (Gaze-based Human Attention) dataset and code of the paper "Human Attention in Fine-g

16 Oct 29, 2022
Codes for "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation"

CSDI This is the github repository for the NeurIPS 2021 paper "CSDI: Conditional Score-based Diffusion Models for Probabilistic Time Series Imputation

106 Jan 04, 2023
This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022).

MoEBERT This PyTorch package implements MoEBERT: from BERT to Mixture-of-Experts via Importance-Guided Adaptation (NAACL 2022). Installation Create an

Simiao Zuo 34 Dec 24, 2022
This is a code repository for paper OODformer: Out-Of-Distribution Detection Transformer

OODformer: Out-Of-Distribution Detection Transformer This repo is the official the implementation of the OODformer: Out-Of-Distribution Detection Tran

34 Dec 02, 2022
FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes

FlexConv: Continuous Kernel Convolutions with Differentiable Kernel Sizes This repository contains the source code accompanying the paper: FlexConv: C

Robert-Jan Bruintjes 96 Dec 12, 2022
MDMM - Learning multi-domain multi-modality I2I translation

Multi-Domain Multi-Modality I2I translation Pytorch implementation of multi-modality I2I translation for multi-domains. The project is an extension to

Hsin-Ying Lee 107 Nov 04, 2022
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
This is a yolo3 implemented via tensorflow 2.7

YoloV3 - an object detection algorithm implemented via TF 2.x source code In this article I assume you've already familiar with basic computer vision

2 Jan 17, 2022
Official code repository for "Exploring Neural Models for Query-Focused Summarization"

Query-Focused Summarization Official code repository for "Exploring Neural Models for Query-Focused Summarization" This is a work in progress. Expect

Salesforce 29 Dec 18, 2022