Collection of Docker images for ML/DL and video processing projects

Overview

dokai-logo

Build and push Generic badge

Collection of Docker images for ML/DL and video processing projects.

Overview of images

Three types of images differ by tag postfix:

  • base: Python with ML and CV packages, CUDA (11.4.2), cuDNN (8.2.4), FFmpeg (4.4) with NVENC support
  • pytorch: PyTorch (1.10.0-rc1), torchvision (0.10.1), torchaudio (0.9.1) and torch based libraries
  • tensor-stream: Tensor Stream for real-time video streams decoding on GPU

Example

Pull an image

docker pull ghcr.io/osai-ai/dokai:21.09-pytorch

Docker Hub mirror

docker pull osaiai/dokai:21.09-pytorch

Check available GPUs inside container

docker run --rm \
    --gpus=all \
    ghcr.io/osai-ai/dokai:21.09-pytorch \
    nvidia-smi

Example of using dokai image for DL pipeline you can find here.

Versions

base

dokai:20.09-base

ghcr.io/osai-ai/dokai:20.09-base

FFmpeg (release/4.3), nv-codec-headers (sdk/9.1)
Python (3.6.9)

pip==20.2.3
setuptools==50.3.0
packaging==20.4
numpy==1.19.2
opencv-python==4.4.0.42
scipy==1.5.2
matplotlib==3.3.2
pandas==1.1.2
notebook==6.1.4
scikit-learn==0.23.2
scikit-image==0.17.2
albumentations==0.4.6
Cython==0.29.21
Pillow==7.2.0
trafaret-config==2.0.2
pyzmq==19.0.2
librosa==0.8.0
psutil==5.7.2
dataclasses==0.7

dokai:20.10-base

ghcr.io/osai-ai/dokai:20.10-base

FFmpeg (release/4.3), nv-codec-headers (sdk/9.1)
Python (3.6.9)

pip==20.2.4
setuptools==50.3.2
packaging==20.4
numpy==1.19.2
opencv-python==4.4.0.44
scipy==1.5.3
matplotlib==3.3.2
pandas==1.1.3
notebook==6.1.4
scikit-learn==0.23.2
scikit-image==0.17.2
albumentations==0.5.0
Cython==0.29.21
Pillow==8.0.0
trafaret-config==2.0.2
pyzmq==19.0.2
librosa==0.8.0
psutil==5.7.2
dataclasses==0.7
pydantic==1.6.1
requests==2.24.0

dokai:20.12-base

ghcr.io/osai-ai/dokai:20.12-base

CUDA (11.1), cuDNN (8.0.5)
FFmpeg (release/4.3), nv-codec-headers (sdk/9.1)
Python (3.8.5)

pip==20.3.3
setuptools==51.0.0
packaging==20.8
numpy==1.19.4
opencv-python==4.4.0.46
scipy==1.5.4
matplotlib==3.3.3
pandas==1.1.5
notebook==6.1.5
scikit-learn==0.23.2
scikit-image==0.18.0
albumentations==0.5.2
Cython==0.29.21
Pillow==8.0.1
trafaret-config==2.0.2
pyzmq==20.0.0
librosa==0.8.0
psutil==5.8.0
pydantic==1.7.3
requests==2.25.1

dokai:21.01-base

ghcr.io/osai-ai/dokai:21.01-base

CUDA (11.1.1), cuDNN (8.0.5)
FFmpeg (release/4.3), nv-codec-headers (sdk/10.0)
Python (3.8.5)

pip==20.3.3
setuptools==51.3.3
packaging==20.8
numpy==1.19.5
opencv-python==4.5.1.48
scipy==1.6.0
matplotlib==3.3.3
pandas==1.2.0
notebook==6.2.0
scikit-learn==0.24.1
scikit-image==0.18.1
albumentations==0.5.2
Cython==0.29.21
Pillow==8.1.0
trafaret-config==2.0.2
pyzmq==21.0.1
librosa==0.8.0
psutil==5.8.0
pydantic==1.7.3
requests==2.25.1

dokai:21.02-base

ghcr.io/osai-ai/dokai:21.02-base

CUDA (11.2.1), cuDNN (8.1.0)
FFmpeg (release/4.3), nv-codec-headers (sdk/10.0)
Python (3.8.5)

pip==21.0.1
setuptools==53.0.0
packaging==20.9
numpy==1.20.1
opencv-python==4.5.1.48
scipy==1.6.1
matplotlib==3.3.4
pandas==1.2.2
scikit-learn==0.24.1
scikit-image==0.18.1
Pillow==8.1.0
librosa==0.8.0
albumentations==0.5.2
pyzmq==22.0.3
Cython==0.29.22
numba==0.52.0
requests==2.25.1
psutil==5.8.0
trafaret-config==2.0.2
pydantic==1.7.3
PyYAML==5.4.1
notebook==6.2.0
ipywidgets==7.6.3
tqdm==4.57.0
pytest==6.2.2
mypy==0.812
flake8==3.8.4

dokai:21.03-base

ghcr.io/osai-ai/dokai:21.03-base

CUDA (11.2.2), cuDNN (8.1.1)
FFmpeg (release/4.4), nv-codec-headers (sdk/10.0)
Python (3.8.5)

pip==21.0.1
setuptools==54.2.0
packaging==20.9
numpy==1.20.1
opencv-python==4.5.1.48
scipy==1.6.1
matplotlib==3.3.4
pandas==1.2.3
scikit-learn==0.24.1
scikit-image==0.18.1
Pillow==8.1.2
librosa==0.8.0
albumentations==0.5.2
pyzmq==22.0.3
Cython==0.29.22
numba==0.53.0
requests==2.25.1
psutil==5.8.0
trafaret-config==2.0.2
pydantic==1.8.1
PyYAML==5.4.1
notebook==6.3.0
ipywidgets==7.6.3
tqdm==4.59.0
pytest==6.2.2
mypy==0.812
flake8==3.9.0

dokai:21.05-base

ghcr.io/osai-ai/dokai:21.05-base

CUDA (11.3), cuDNN (8.2.0)
FFmpeg (release/4.4), nv-codec-headers (sdk/10.0)
Python (3.8.5)

pip==21.1.1
setuptools==56.2.0
packaging==20.9
numpy==1.20.3
opencv-python==4.5.2.52
scipy==1.6.3
matplotlib==3.4.2
pandas==1.2.4
scikit-learn==0.24.2
scikit-image==0.18.1
Pillow==8.2.0
librosa==0.8.0
albumentations==0.5.2
pyzmq==22.0.3
Cython==0.29.23
numba==0.53.1
requests==2.25.1
psutil==5.8.0
trafaret-config==2.0.2
pydantic==1.8.1
PyYAML==5.4.1
notebook==6.3.0
ipywidgets==7.6.3
tqdm==4.60.0
pytest==6.2.4
mypy==0.812
flake8==3.9.2

dokai:21.07-base

ghcr.io/osai-ai/dokai:21.07-base

CUDA (11.3.1), cuDNN (8.2.0)
FFmpeg (release/4.4), nv-codec-headers (sdk/10.0)
Python (3.8.10)

pip==21.1.3
setuptools==57.0.0
packaging==20.9
numpy==1.21.0
opencv-python==4.5.2.54
scipy==1.7.0
matplotlib==3.4.2
pandas==1.2.5
scikit-learn==0.24.2
scikit-image==0.18.2
Pillow==8.2.0
librosa==0.8.1
albumentations==1.0.0
pyzmq==22.1.0
Cython==0.29.23
numba==0.53.1
requests==2.25.1
psutil==5.8.0
trafaret-config==2.0.2
pydantic==1.8.2
PyYAML==5.4.1
notebook==6.4.0
ipywidgets==7.6.3
tqdm==4.61.1
pytest==6.2.4
mypy==0.910
flake8==3.9.2

dokai:21.08-base

ghcr.io/osai-ai/dokai:21.08-base

CUDA (11.4.1), cuDNN (8.2.2)
FFmpeg (release/4.4), nv-codec-headers (sdk/11.0)
Python (3.8.10)

pip==21.2.3
setuptools==57.4.0
packaging==21.0
numpy==1.21.1
opencv-python==4.5.3.56
scipy==1.7.1
matplotlib==3.4.2
pandas==1.3.1
scikit-learn==0.24.2
scikit-image==0.18.2
Pillow==8.3.1
librosa==0.8.1
albumentations==1.0.3
pyzmq==22.2.1
Cython==0.29.24
numba==0.53.1
requests==2.26.0
psutil==5.8.0
pydantic==1.8.2
PyYAML==5.4.1
notebook==6.4.3
ipywidgets==7.6.3
tqdm==4.62.0
pytest==6.2.4
mypy==0.910
flake8==3.9.2

dokai:21.09-base

ghcr.io/osai-ai/dokai:21.09-base

CUDA (11.4.2), cuDNN (8.2.4)
FFmpeg (release/4.4), nv-codec-headers (sdk/11.0)
Python (3.8.10)

pip==21.2.4
setuptools==58.1.0
packaging==21.0
numpy==1.21.2
opencv-python==4.5.3.56
scipy==1.7.1
matplotlib==3.4.3
pandas==1.3.3
scikit-learn==1.0
scikit-image==0.18.3
Pillow==8.3.2
librosa==0.8.1
albumentations==1.0.3
pyzmq==22.3.0
Cython==0.29.24
numba==0.53.1
requests==2.26.0
psutil==5.8.0
pydantic==1.8.2
PyYAML==5.4.1
notebook==6.4.4
ipywidgets==7.6.5
tqdm==4.62.3
pytest==6.2.5
mypy==0.910
flake8==3.9.2

pytorch

dokai:20.09-pytorch

ghcr.io/osai-ai/dokai:20.09-pytorch

additionally to dokai:20.09-base:

torch==1.6.0
torchvision==0.7.0
pytorch-argus==0.1.2
timm==0.2.1
apex (master)

dokai:20.10-pytorch

ghcr.io/osai-ai/dokai:20.10-pytorch

additionally to dokai:20.10-base:

torch==1.6.0
torchvision==0.7.0
pytorch-argus==0.1.2
timm==0.2.1
apex (master)

dokai:20.12-pytorch

ghcr.io/osai-ai/dokai:20.12-pytorch

additionally to dokai:20.12-base:

torch==1.7.1 (source, v1.7.1 tag)
torchvision==0.8.2 (source, v0.8.2 tag)
pytorch-argus==0.2.0
timm==0.3.2
kornia==0.4.1
apex (source, master branch)

dokai:21.01-pytorch

ghcr.io/osai-ai/dokai:21.01-pytorch

additionally to dokai:21.01-base:

torch==1.8.0a0+4aea007 (source, master branch)
torchvision==0.8.2 (source, v0.8.2 tag)
pytorch-argus==0.2.0
timm==0.3.4
kornia==0.4.1
apex (source, master branch)

dokai:21.02-pytorch

ghcr.io/osai-ai/dokai:21.02-pytorch

additionally to dokai:21.02-base:

torch==1.9.0a0+c2b9283 (source, master branch)
torchvision==0.8.2 (source, v0.8.2 tag)
pytorch-argus==0.2.0
timm==0.4.4 (source, master branch)
kornia==0.4.1
pretrainedmodels==0.7.4
efficientnet-pytorch==0.7.0
segmentation-models-pytorch==0.1.3
apex (source, master branch)

dokai:21.03-pytorch

ghcr.io/osai-ai/dokai:21.03-pytorch

additionally to dokai:21.03-base:

torch==1.8.0 (source, v1.8.0 tag)
torchvision==0.9.0 (source, v0.9.0 tag)
torchaudio==0.8.0 (source, v0.8.0 tag)
pytorch-argus==0.2.1
timm==0.4.5
kornia==0.5.0
pretrainedmodels==0.7.4
efficientnet-pytorch==0.7.0
segmentation-models-pytorch==0.1.3
apex (source, master branch)

dokai:21.05-pytorch

ghcr.io/osai-ai/dokai:21.05-pytorch

additionally to dokai:21.05-base:

torch==1.8.1 (source, v1.8.1 tag)
torchvision==0.9.1 (source, v0.9.1 tag)
torchaudio==0.8.1 (source, v0.8.1 tag)
pytorch-argus==0.2.1
timm==0.4.8 (source, master branch)
kornia==0.5.1
pretrainedmodels==0.7.4
efficientnet-pytorch==0.7.1
segmentation-models-pytorch==0.1.3
apex (source, master branch)

dokai:21.07-pytorch

ghcr.io/osai-ai/dokai:21.07-pytorch

additionally to dokai:21.07-base:

torch==1.9.0 (source, v1.9.0 tag)
torchvision==0.10.0 (source, v0.10.0 tag)
torchaudio==0.9.0 (source, v0.9.0 tag)
pytorch-argus==0.2.1
pretrainedmodels==0.7.4
efficientnet-pytorch==0.7.1
timm==0.4.12
segmentation-models-pytorch==0.1.3
kornia==0.5.5
apex (source, master branch)

dokai:21.08-pytorch

ghcr.io/osai-ai/dokai:21.08-pytorch

additionally to dokai:21.08-base:

MAGMA (2.6.1)

torch==1.10.0a0+git5b8389e (source, master branch)
torchvision==0.10.0 (source, v0.10.0 tag)
torchaudio==0.9.0 (source, v0.9.0 tag)
pytorch-ignite==0.4.6
pytorch-argus==0.2.1
pretrainedmodels==0.7.4
efficientnet-pytorch==0.7.1
timm==0.4.12
segmentation-models-pytorch==0.2.0
kornia==0.5.8
apex (source, master branch)

dokai:21.09-pytorch

ghcr.io/osai-ai/dokai:21.09-pytorch

additionally to dokai:21.09-base:

MAGMA (2.6.1)

torch==1.10.0-rc1 (source, v1.10.0-rc1 tag)
torchvision==0.10.1 (source, v0.10.1 tag)
torchaudio==0.9.1 (source, v0.9.1 tag)
pytorch-ignite==0.4.6
pytorch-argus==0.2.1
pretrainedmodels==0.7.4
efficientnet-pytorch==0.7.1
timm==0.4.12
segmentation-models-pytorch==0.2.0
kornia==0.5.11
apex (source, master branch)

tensor-stream

dokai:20.09-tensor-stream

ghcr.io/osai-ai/dokai:20.09-tensor-stream

additionally to dokai:20.09-pytorch:

tensor-stream==0.4.6 (dev)

dokai:20.10-tensor-stream

ghcr.io/osai-ai/dokai:20.10-tensor-stream

additionally to dokai:20.10-pytorch:

tensor-stream==0.4.6 (dev)

dokai:20.12-tensor-stream

ghcr.io/osai-ai/dokai:20.12-tensor-stream

additionally to dokai:20.12-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.01-tensor-stream

ghcr.io/osai-ai/dokai:21.01-tensor-stream

additionally to dokai:21.01-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.02-tensor-stream

ghcr.io/osai-ai/dokai:21.02-tensor-stream

additionally to dokai:21.02-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.03-tensor-stream

ghcr.io/osai-ai/dokai:21.03-tensor-stream

additionally to dokai:21.03-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.05-tensor-stream

ghcr.io/osai-ai/dokai:21.05-tensor-stream

additionally to dokai:21.05-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.07-tensor-stream

ghcr.io/osai-ai/dokai:21.07-tensor-stream

additionally to dokai:21.07-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.08-tensor-stream

ghcr.io/osai-ai/dokai:21.08-tensor-stream

additionally to dokai:21.08-pytorch:

tensor-stream==0.4.6 (source, dev branch)

dokai:21.09-tensor-stream

ghcr.io/osai-ai/dokai:21.09-tensor-stream

additionally to dokai:21.09-pytorch:

tensor-stream==0.4.6 (source, dev branch)

You might also like...
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.
This solves the autonomous driving issue which is supported by deep learning technology. Given a video, it splits into images and predicts the angle of turning for each frame.

Self Driving Car An autonomous car (also known as a driverless car, self-driving car, and robotic car) is a vehicle that is capable of sensing its env

Doods2 - API for detecting objects in images and video streams using Tensorflow

DOODS2 - Return of DOODS Dedicated Open Object Detection Service - Yes, it's a b

Search Youtube Video and Get Video info
Search Youtube Video and Get Video info

PyYouTube Get Video Data from YouTube link Installation pip install PyYouTube How to use it ? Get Videos Data from pyyoutube import Data yt = Data("ht

We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Video lie detector using xgboost - A video lie detector using OpenFace and xgboost

video_lie_detector_using_xgboost a video lie detector using OpenFace and xgboost

 MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.
Pytorch implementation of our method for high-resolution (e.g. 2048x1024) photorealistic video-to-video translation.

vid2vid Project | YouTube(short) | YouTube(full) | arXiv | Paper(full) Pytorch implementation for high-resolution (e.g., 2048x1024) photorealistic vid

Comments
  • Does not work `torchaudio.transforms.MelSpectrogram`, no MKL

    Does not work `torchaudio.transforms.MelSpectrogram`, no MKL

    I used docker pulled from ghcr.io/osai-ai/dokai:21.05-pytorch.

    The following code gives an error:

    python -c 'import torchaudio; import torch; a = torch.randn(2, 4663744); torchaudio.transforms.MelSpectrogram(44100)(a)'

    /usr/local/lib/python3.8/dist-packages/torchaudio-0.8.0a0+e4e171a-py3.8-linux-x86_64.egg/torchaudio/functional/functional.py:357: UserWarning: At least one mel filterbank has all zero values. The value for `n_mels` (128) may be set too high. Or, the value for `n_freqs` (201) may be set too low.
      warnings.warn(
    Traceback (most recent call last):
      File "<string>", line 1, in <module>
      File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/usr/local/lib/python3.8/dist-packages/torchaudio-0.8.0a0+e4e171a-py3.8-linux-x86_64.egg/torchaudio/transforms.py", line 480, in forward
        specgram = self.spectrogram(waveform)
      File "/usr/local/lib/python3.8/dist-packages/torch/nn/modules/module.py", line 889, in _call_impl
        result = self.forward(*input, **kwargs)
      File "/usr/local/lib/python3.8/dist-packages/torchaudio-0.8.0a0+e4e171a-py3.8-linux-x86_64.egg/torchaudio/transforms.py", line 96, in forward
        return F.spectrogram(
      File "/usr/local/lib/python3.8/dist-packages/torchaudio-0.8.0a0+e4e171a-py3.8-linux-x86_64.egg/torchaudio/functional/functional.py", line 91, in spectrogram
        spec_f = torch.stft(
      File "/usr/local/lib/python3.8/dist-packages/torch/functional.py", line 580, in stft
        return _VF.stft(input, n_fft, hop_length, win_length, window,  # type: ignore
    RuntimeError: fft: ATen not compiled with MKL support
    

    and this check python -c 'import torch; a = torch.randn(10); print(a.to_mkldnn().layout)' works correctly.

    opened by Ayagoz 2
  • Expired link to nv-codec-headers repo

    Expired link to nv-codec-headers repo

    Hi, git.videolan.org is experiencing some issues again, it looks like the certificate for the domain is expired or something like that (but it was alive just a week ago!). Also, they are migrating to code.videolan.org, however nv-codec-headers is not there yet.

    The current link does not work: https://github.com/osai-ai/dokai/blob/6f99608b70881de43740bc84c34f42249f4f65aa/docker/Dockerfile.base#L43

    Temporary workaround: https://github.com/FFmpeg/nv-codec-headers.git

    opened by NikolasEnt 1
Releases(v22.11)
  • v22.11(Nov 22, 2022)

    Updates

    • TensorRT 8.5.1
    • torch 1.14.0a0+git71fe069 (source, close to v1.13.0 after commit "ada lovelace (arch 8.9) support #87436")
    • torchvision 0.14.0 (from source, v0.14.0 tag)
    • torchaudio 0.13.0 (from source, v0.13.0 tag)
    • Update other PyPI packages
    • Ada Lovelace architecture support
    • PyTorch image models benchmark link

    Images

    base

    Python with ML and CV packages, CUDA (11.8.0), cuDNN (8.6.0), FFmpeg (4.4) with NVENC/NVDEC support ghcr.io/osai-ai/dokai:22.11-base

    dokai:22.11-base

    Supported NVIDIA architectures: Pascal (sm_60, sm_61), Volta (sm_70), Turing (sm_75), Ampere (sm_80, sm_86), Ada Lovelace (sm_89).

    CUDA (11.8.0), cuDNN (8.6.0) FFmpeg (release/4.4), nv-codec-headers (sdk/11.0) Python (3.10.6) CMake (3.22.1)

    pip==22.3.1 setuptools==65.5.1 packaging==21.3 numpy==1.23.4 opencv-python==4.6.0.66 scipy==1.9.3 matplotlib==3.6.2 pandas==1.5.1 scikit-learn==1.1.3 scikit-image==0.19.3 Pillow==9.3.0 librosa==0.9.2 albumentations==1.3.0 pyzmq==24.0.1 Cython==0.29.32 numba==0.56.4 requests==2.28.1 psutil==5.9.4 pydantic==1.10.2 PyYAML==6.0 notebook==6.5.2 ipywidgets==8.0.2 tqdm==4.64.1 pytest==7.2.0 pytest-cov==4.0.0 mypy==0.991 flake8==5.0.4 pre-commit==2.20.0

    pytorch

    TensorRT (8.5.1) , PyTorch (1.13.0), torchvision (0.14.0), torchaudio (0.13.0) and torch based libraries. ghcr.io/osai-ai/dokai:22.11-pytorch

    dokai:22.11-pytorch

    additionally to dokai:22.11-base:

    TensorRT (8.5.1) MAGMA (2.6.2)

    torch==1.14.0a0+git71fe069 (source, close to v1.13.0 after commit "ada lovelace (arch 8.9) support #87436") torchvision==0.14.0 (source, v0.14.0 tag) torchaudio==0.13.0 (source, v0.13.0 tag) pytorch-ignite==0.4.10 pytorch-argus==1.0.0 pretrainedmodels==0.7.4 efficientnet-pytorch==0.7.1 pytorch-toolbelt==0.5.2 kornia==0.6.8 timm==0.6.11 segmentation-models-pytorch==0.3.0

    tensor-stream

    Tensor Stream for real-time video streams decoding on GPU.
    ghcr.io/osai-ai/dokai:22.11-tensor-stream

    dokai:22.11-tensor-stream

    additionally to dokai:22.11-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
    build_logs.zip(471.12 KB)
  • v22.03(Mar 28, 2022)

    Updates

    • CUDA 11.6.0
    • torch 1.11.0 (from source, v1.11.0 tag)
    • torchvision 0.12.0 (from source, v0.12.0 tag)
    • torchaudio 0.11.0 (from source, v0.11.0 tag)
    • CMake (3.22.2)
    • Update other PyPI packages
    • Update README

    Images

    base

    Python with ML and CV packages, CUDA (11.6.0), FFmpeg (4.4) with NVENC support.

    dokai:22.03-base

    ghcr.io/osai-ai/dokai:22.03-base

    CUDA (11.6.0) FFmpeg (release/4.4), nv-codec-headers (sdk/11.0)
    Python (3.8.10)
    CMake (3.22.2)

    pip==22.0.3
    setuptools==59.5.0
    packaging==21.3
    numpy==1.21.5
    opencv-python==4.5.5.62
    scipy==1.8.0
    matplotlib==3.5.1
    pandas==1.4.1
    scikit-learn==1.0.1
    scikit-image==0.18.3
    Pillow==8.4.0
    librosa==0.8.1
    albumentations==1.1.0
    pyzmq==22.3.0
    Cython==0.29.24
    numba==0.53.1
    requests==2.26.0
    psutil==5.8.0
    pydantic==1.8.2
    PyYAML==6.0
    notebook==6.4.5
    ipywidgets==7.6.5
    tqdm==4.62.3
    pytest==6.2.5
    mypy==0.910
    flake8==4.0.1

    pytorch

    PyTorch, torchvision and torch based libraries.

    dokai:22.03-pytorch

    ghcr.io/osai-ai/dokai:22.03-pytorch

    additionally to dokai:22.03-base:

    MAGMA (2.6.1)

    torch==1.11.0 (source, v1.11.0 tag)
    torchvision==0.12.0 (source, v0.12.0 tag)
    torchaudio==0.11.0 (source, v0.11.0 tag)
    pytorch-ignite==0.4.8
    pytorch-argus==1.0.0
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.1
    timm==0.5.4
    segmentation-models-pytorch==0.2.1
    kornia==0.6.3

    tensor-stream

    Tensor Stream.

    dokai:22.03-tensor-stream

    ghcr.io/osai-ai/dokai:22.03-tensor-stream

    additionally to dokai:22.03-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.11(Nov 9, 2021)

    Updates

    • torch 1.10.0 (from source, v1.10.0 tag)
    • torchvision 0.11.1 (from source, v0.11.1 tag)
    • torchaudio 0.10.0 (from source, v0.10.0 tag)
    • CMake (3.21.4)
    • Remove Apex installation
    • Update other PyPI packages

    Images

    base

    Python with ML and CV packages, CUDA (11.4.2), cuDNN (8.2.4), FFmpeg (4.4) with NVENC support.
    ghcr.io/osai-ai/dokai:21.11-base

    dokai:21.11-base

    CUDA (11.4.2), cuDNN (8.2.4)
    FFmpeg (release/4.4), nv-codec-headers (sdk/11.0)
    Python (3.8.10)
    CMake (3.21.4)

    pip==21.3.1
    setuptools==58.5.3
    packaging==21.2
    numpy==1.21.4
    opencv-python==4.5.4.58
    scipy==1.7.2
    matplotlib==3.4.3
    pandas==1.3.4
    scikit-learn==1.0.1
    scikit-image==0.18.3
    Pillow==8.4.0
    librosa==0.8.1
    albumentations==1.1.0
    pyzmq==22.3.0
    Cython==0.29.24
    numba==0.53.1
    requests==2.26.0
    psutil==5.8.0
    pydantic==1.8.2
    PyYAML==6.0
    notebook==6.4.5
    ipywidgets==7.6.5
    tqdm==4.62.3
    pytest==6.2.5
    mypy==0.910
    flake8==4.0.1

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.11-pytorch

    dokai:21.11-pytorch

    additionally to dokai:21.11-base:

    MAGMA (2.6.1)

    torch==1.10.0 (source, v1.10.0 tag)
    torchvision==0.11.1 (source, v0.11.1 tag)
    torchaudio==0.10.0 (source, v0.10.0 tag)
    pytorch-ignite==0.4.7
    pytorch-argus==1.0.0
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.1
    timm==0.4.12
    segmentation-models-pytorch==0.2.0
    kornia==0.6.1

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.11-tensor-stream

    dokai:21.11-tensor-stream

    additionally to dokai:21.11-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.09(Sep 30, 2021)

    Updates

    • CUDA 11.4.2, cuDNN 8.2.4
    • Build torch 1.10.0-rc1 (from source, v1.10.0-rc1 tag)
    • FFmpeg with HTTPS support
    • kornia 0.5.11
    • Update other PyPI packages

    Images

    base

    Python with ML and CV packages, CUDA (11.4.2), cuDNN (8.2.4), FFmpeg (4.4) with NVENC support.
    ghcr.io/osai-ai/dokai:21.09-base

    dokai:21.09-base

    CUDA (11.4.2), cuDNN (8.2.4)
    FFmpeg (release/4.4), nv-codec-headers (sdk/11.0)
    Python (3.8.10)

    pip==21.2.4
    setuptools==58.1.0
    packaging==21.0
    numpy==1.21.2
    opencv-python==4.5.3.56
    scipy==1.7.1
    matplotlib==3.4.3
    pandas==1.3.3
    scikit-learn==1.0
    scikit-image==0.18.3
    Pillow==8.3.2
    librosa==0.8.1
    albumentations==1.0.3
    pyzmq==22.3.0
    Cython==0.29.24
    numba==0.53.1
    requests==2.26.0
    psutil==5.8.0
    pydantic==1.8.2
    PyYAML==5.4.1
    notebook==6.4.4
    ipywidgets==7.6.5
    tqdm==4.62.3
    pytest==6.2.5
    mypy==0.910
    flake8==3.9.2

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.09-pytorch

    dokai:21.09-pytorch

    additionally to dokai:21.09-base:

    MAGMA (2.6.1)

    torch==1.10.0-rc1 (source, v1.10.0-rc1 tag)
    torchvision==0.10.1 (source, v0.10.1 tag)
    torchaudio==0.9.1 (source, v0.9.1 tag)
    pytorch-ignite==0.4.6
    pytorch-argus==0.2.1
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.1
    timm==0.4.12
    segmentation-models-pytorch==0.2.0
    kornia==0.5.11
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.09-tensor-stream

    dokai:21.09-tensor-stream

    additionally to dokai:21.09-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.08(Aug 12, 2021)

    Updates

    • CUDA 11.4.1, cuDNN 8.2.2
    • nv-codec-headers (sdk/11.0)
    • MAGMA 2.6.1
    • Build torch 1.10.0a0+git5b8389e from source (master branch)
    • pytorch-ignite 0.4.6
    • segmentation-models-pytorch 0.2.0
    • kornia 0.5.8
    • Update other PyPI packages

    Images

    base

    Python with ML and CV packages, CUDA (11.4.1), cuDNN (8.2.2), FFmpeg (4.4) with NVENC support.
    ghcr.io/osai-ai/dokai:21.08-base

    dokai:21.08-base

    CUDA (11.4.1), cuDNN (8.2.2)
    FFmpeg (release/4.4), nv-codec-headers (sdk/11.0)
    Python (3.8.10)

    pip==21.2.3
    setuptools==57.4.0
    packaging==21.0
    numpy==1.21.1
    opencv-python==4.5.3.56
    scipy==1.7.1
    matplotlib==3.4.2
    pandas==1.3.1
    scikit-learn==0.24.2
    scikit-image==0.18.2
    Pillow==8.3.1
    librosa==0.8.1
    albumentations==1.0.3
    pyzmq==22.2.1
    Cython==0.29.24
    numba==0.53.1
    requests==2.26.0
    psutil==5.8.0
    pydantic==1.8.2
    PyYAML==5.4.1
    notebook==6.4.3
    ipywidgets==7.6.3
    tqdm==4.62.0
    pytest==6.2.4
    mypy==0.910
    flake8==3.9.2

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.08-pytorch

    dokai:21.08-pytorch

    additionally to dokai:21.08-base:

    MAGMA (2.6.1)

    torch==1.10.0a0+git5b8389e (source, master branch)
    torchvision==0.10.0 (source, v0.10.0 tag)
    torchaudio==0.9.0 (source, v0.9.0 tag)
    pytorch-ignite==0.4.6
    pytorch-argus==0.2.1
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.1
    timm==0.4.12
    segmentation-models-pytorch==0.2.0
    kornia==0.5.8
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.08-tensor-stream

    dokai:21.08-tensor-stream

    additionally to dokai:21.08-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.07(Jul 2, 2021)

    Updates

    • CUDA 11.3.1
    • Build torch 1.9.0 from source (v1.9.0 tag)
    • torchvision 0.10.0 from source (v0.10.0 tag)
    • torchaudio 0.9.0 from source (v0.9.0 tag)
    • timm 0.4.12
    • kornia 0.5.5
    • Update other PyPI packages

    Images

    base

    Python with ML and CV packages, CUDA (11.3.1), cuDNN (8.2.0), FFmpeg (4.4) with NVENC support.
    ghcr.io/osai-ai/dokai:21.07-base

    dokai:21.07-base

    CUDA (11.3.1), cuDNN (8.2.0)
    FFmpeg (release/4.4), nv-codec-headers (sdk/10.0)
    Python (3.8.10)

    pip==21.1.3
    setuptools==57.0.0
    packaging==20.9
    numpy==1.21.0
    opencv-python==4.5.2.54
    scipy==1.7.0
    matplotlib==3.4.2
    pandas==1.2.5
    scikit-learn==0.24.2
    scikit-image==0.18.2
    Pillow==8.2.0
    librosa==0.8.1
    albumentations==1.0.0
    pyzmq==22.1.0
    Cython==0.29.23
    numba==0.53.1
    requests==2.25.1
    psutil==5.8.0
    trafaret-config==2.0.2
    pydantic==1.8.2
    PyYAML==5.4.1
    notebook==6.4.0
    ipywidgets==7.6.3
    tqdm==4.61.1
    pytest==6.2.4
    mypy==0.910
    flake8==3.9.2

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.07-pytorch

    dokai:21.07-pytorch

    additionally to dokai:21.07-base:

    torch==1.9.0 (source, v1.9.0 tag)
    torchvision==0.10.0 (source, v0.10.0 tag)
    torchaudio==0.9.0 (source, v0.9.0 tag)
    pytorch-argus==0.2.1
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.1
    timm==0.4.12
    segmentation-models-pytorch==0.1.3
    kornia==0.5.5
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.07-tensor-stream

    dokai:21.07-tensor-stream

    additionally to dokai:21.07-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.05(May 11, 2021)

    Updates

    • CUDA 11.3, cuDNN 8.2.0
    • Build torch 1.8.1 from source (v1.8.1 tag)
    • torchvision 0.9.1 from source (v0.9.1 tag)
    • torchaudio 0.8.1 from source (v0.8.1 tag)
    • timm 0.4.8 from source (master branch)
    • Update other PyPI packages

    Images

    base

    Python with ML and CV packages, CUDA (11.3), cuDNN (8.2.0), FFmpeg (4.4) with NVENC support.
    ghcr.io/osai-ai/dokai:21.05-base

    dokai:21.05-base

    CUDA (11.3), cuDNN (8.2.0)
    FFmpeg (release/4.4), nv-codec-headers (sdk/10.0)
    Python (3.8.5)

    pip==21.1.1
    setuptools==56.2.0
    packaging==20.9
    numpy==1.20.3
    opencv-python==4.5.2.52
    scipy==1.6.3
    matplotlib==3.4.2
    pandas==1.2.4
    scikit-learn==0.24.2
    scikit-image==0.18.1
    Pillow==8.2.0
    librosa==0.8.0
    albumentations==0.5.2
    pyzmq==22.0.3
    Cython==0.29.23
    numba==0.53.1
    requests==2.25.1
    psutil==5.8.0
    trafaret-config==2.0.2
    pydantic==1.8.1
    PyYAML==5.4.1
    notebook==6.3.0
    ipywidgets==7.6.3
    tqdm==4.60.0
    pytest==6.2.4
    mypy==0.812
    flake8==3.9.2

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.05-pytorch

    dokai:21.05-pytorch

    additionally to dokai:21.05-base:

    torch==1.8.1 (source, v1.8.1 tag)
    torchvision==0.9.1 (source, v0.9.1 tag)
    torchaudio==0.8.1 (source, v0.8.1 tag)
    pytorch-argus==0.2.1
    timm==0.4.8 (source, master branch)
    kornia==0.5.1
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.1
    segmentation-models-pytorch==0.1.3
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.05-tensor-stream

    dokai:21.05-tensor-stream

    additionally to dokai:21.05-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.03(Mar 25, 2021)

    Updates

    • CUDA 11.2.2, cuDNN 8.1.1
    • FFmpeg 4.4
    • Build torch 1.8.0 from source (v1.8.0 tag)
    • torchvision 0.9.0
    • Add PyTorch package: torchaudio 0.8.0
    • timm 0.4.5
    • pytorch-argus 0.2.1
    • Update other PyPI packages
    • Support more GPU architectures for FFmpeg

    Images

    base

    Python with ML and CV packages, CUDA (11.2.2), cuDNN (8.1.1), FFmpeg (4.4) with NVENC support.
    ghcr.io/osai-ai/dokai:21.03-base

    dokai:21.03-base

    ghcr.io/osai-ai/dokai:21.03-base

    CUDA (11.2.2), cuDNN (8.1.1)
    FFmpeg (release/4.4), nv-codec-headers (sdk/10.0)
    Python (3.8.5)

    pip==21.0.1
    setuptools==54.2.0
    packaging==20.9
    numpy==1.20.1
    opencv-python==4.5.1.48
    scipy==1.6.1
    matplotlib==3.3.4
    pandas==1.2.3
    scikit-learn==0.24.1
    scikit-image==0.18.1
    Pillow==8.1.2
    librosa==0.8.0
    albumentations==0.5.2
    pyzmq==22.0.3
    Cython==0.29.22
    numba==0.53.0
    requests==2.25.1
    psutil==5.8.0
    trafaret-config==2.0.2
    pydantic==1.8.1
    PyYAML==5.4.1
    notebook==6.3.0
    ipywidgets==7.6.3
    tqdm==4.59.0
    pytest==6.2.2
    mypy==0.812
    flake8==3.9.0

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.03-pytorch

    dokai:21.03-pytorch

    additionally to dokai:21.03-base:

    torch==1.8.0 (source, v1.8.0 tag)
    torchvision==0.9.0 (source, v0.9.0 tag)
    torchaudio==0.8.0 (source, v0.8.0 tag)
    pytorch-argus==0.2.1
    timm==0.4.5
    kornia==0.5.0
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.0
    segmentation-models-pytorch==0.1.3
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.03-tensor-stream

    dokai:21.03-tensor-stream

    additionally to dokai:21.03-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.02(Feb 23, 2021)

    New features

    • CUDA 11.2.1, cuDNN 8.1.0
    • Build torch 1.9.0a0+c2b9283 from source (master branch)
    • Install timm 0.4.4 from source (master branch)
    • Add more Python packages: tqdm, PyYAML, pytest, mypy, flake8
    • Add more PyTorch packages: pretrainedmodels, efficientnet-pytorch, segmentation-models-pytorch
    • Update other PyPI packages

    Images

    base

    Python with ML and CV packages, CUDA (11.2.1), cuDNN (8.1.0), FFmpeg with NVENC support.
    ghcr.io/osai-ai/dokai:21.02-base

    dokai:21.02-base

    CUDA (11.2.1), cuDNN (8.1.0)
    FFmpeg (release/4.3), nv-codec-headers (sdk/10.0)
    Python (3.8.5)

    pip==21.0.1
    setuptools==53.0.0
    packaging==20.9
    numpy==1.20.1
    opencv-python==4.5.1.48
    scipy==1.6.1
    matplotlib==3.3.4
    pandas==1.2.2
    scikit-learn==0.24.1
    scikit-image==0.18.1
    Pillow==8.1.0
    librosa==0.8.0
    albumentations==0.5.2
    pyzmq==22.0.3
    Cython==0.29.22
    numba==0.52.0
    requests==2.25.1
    psutil==5.8.0
    trafaret-config==2.0.2
    pydantic==1.7.3
    PyYAML==5.4.1
    notebook==6.2.0
    ipywidgets==7.6.3
    tqdm==4.57.0
    pytest==6.2.2
    mypy==0.812
    flake8==3.8.4

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.02-pytorch

    dokai:21.02-pytorch

    additionally to dokai:21.02-base:

    torch==1.9.0a0+c2b9283 (source, master branch)
    torchvision==0.8.2 (source, v0.8.2 tag)
    pytorch-argus==0.2.0
    timm==0.4.4 (source, master branch)
    kornia==0.4.1
    pretrainedmodels==0.7.4
    efficientnet-pytorch==0.7.0
    segmentation-models-pytorch==0.1.3
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.02-tensor-stream

    dokai:21.02-tensor-stream

    additionally to dokai:21.02-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v21.01(Jan 21, 2021)

    New features

    • CUDA 11.1.1
    • nv-codec-headers (sdk/10.0)
    • Build torch 1.8.0a0+4aea007 from source (master branch)
    • Update other PyPI packages
    • Docker Hub mirror

    Images

    base

    Python with ML and CV packages, CUDA, FFmpeg with NVENC support.
    ghcr.io/osai-ai/dokai:21.01-base

    dokai:21.01-base

    CUDA (11.1.1), cuDNN (8.0.5)
    FFmpeg (release/4.3), nv-codec-headers (sdk/10.0)
    Python (3.8.5)

    pip==20.3.3
    setuptools==51.3.3
    packaging==20.8
    numpy==1.19.5
    opencv-python==4.5.1.48
    scipy==1.6.0
    matplotlib==3.3.3
    pandas==1.2.0
    notebook==6.2.0
    scikit-learn==0.24.1
    scikit-image==0.18.1
    albumentations==0.5.2
    Cython==0.29.21
    Pillow==8.1.0
    trafaret-config==2.0.2
    pyzmq==21.0.1
    librosa==0.8.0
    psutil==5.8.0
    pydantic==1.7.3
    requests==2.25.1

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:21.01-pytorch

    dokai:21.01-pytorch

    additionally to dokai:21.01-base:

    torch==1.8.0a0+4aea007 (source, master branch)
    torchvision==0.8.2 (source, v0.8.2 tag)
    pytorch-argus==0.2.0
    timm==0.3.4
    kornia==0.4.1
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:21.01-tensor-stream

    dokai:21.01-tensor-stream

    additionally to dokai:21.01-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v20.12(Dec 24, 2020)

    New features

    • CUDA 11.1, cuDNN 8.0.5, Ubuntu 20.04, Python 3.8.5
    • Build PyTorch and torchvision from source
    • Build CUDA libraries for Ampere architecture (TORCH_CUDA_ARCH_LIST="6.0;6.1;7.0;7.5;8.0;8.6")
    • kornia

    Images

    base

    Python with ML and CV packages, CUDA, FFmpeg with NVENC support.
    ghcr.io/osai-ai/dokai:20.12-base

    dokai:20.12-base

    CUDA (11.1), cuDNN (8.0.5) FFmpeg (release/4.3), nv-codec-headers (sdk/9.1)
    Python (3.8.5)

    pip==20.3.3
    setuptools==51.0.0
    packaging==20.8
    numpy==1.19.4
    opencv-python==4.4.0.46
    scipy==1.5.4
    matplotlib==3.3.3
    pandas==1.1.5
    notebook==6.1.5
    scikit-learn==0.23.2
    scikit-image==0.18.0
    albumentations==0.5.2
    Cython==0.29.21
    Pillow==8.0.1
    trafaret-config==2.0.2
    pyzmq==20.0.0
    librosa==0.8.0
    psutil==5.8.0
    pydantic==1.7.3
    requests==2.25.1

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:20.12-pytorch

    dokai:20.12-pytorch

    additionally to dokai:20.12-base:

    torch==1.7.1 (source, v1.7.1 tag)
    torchvision==0.8.2 (source, v0.8.2 tag)
    pytorch-argus==0.2.0
    timm==0.3.2
    kornia==0.4.1
    apex (source, master branch)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:20.12-tensor-stream

    dokai:20.12-tensor-stream

    additionally to dokai:20.12-pytorch:

    tensor-stream==0.4.6 (source, dev branch)

    Source code(tar.gz)
    Source code(zip)
  • v20.10(Oct 22, 2020)

    New features

    • pydantic
    • requests

    Fix

    • Build Tensor Stream for lower cuDNN versions 3.7+PTX;5.0;6.0;6.1;7.0;7.5

    Images

    base

    Python with ML and CV packages, CUDA, FFmpeg with NVENC support.
    ghcr.io/osai-ai/dokai:20.10-base

    dokai:20.10-base

    FFmpeg (release/4.3), nv-codec-headers (sdk/9.1)
    Python (3.6.9)

    pip==20.2.4
    setuptools==50.3.2
    packaging==20.4
    numpy==1.19.2
    opencv-python==4.4.0.44
    scipy==1.5.3
    matplotlib==3.3.2
    pandas==1.1.3
    notebook==6.1.4
    scikit-learn==0.23.2
    scikit-image==0.17.2
    albumentations==0.5.0
    Cython==0.29.21
    Pillow==8.0.0
    trafaret-config==2.0.2
    pyzmq==19.0.2
    librosa==0.8.0
    psutil==5.7.2
    dataclasses==0.7
    pydantic==1.6.1
    requests==2.24.0

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:20.10-pytorch

    dokai:20.10-pytorch

    additionally to dokai:20.10-base:

    torch==1.6.0
    torchvision==0.7.0
    pytorch-argus==0.1.2
    timm==0.2.1
    apex (master)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:20.10-tensor-stream

    dokai:20.10-tensor-stream

    additionally to dokai:20.10-pytorch:

    tensor-stream==0.4.6 (dev)

    Source code(tar.gz)
    Source code(zip)
  • v20.09(Sep 29, 2020)

    base

    Python with ML and CV packages, CUDA, FFmpeg with NVENC support.
    ghcr.io/osai-ai/dokai:20.09-base

    dokai:20.09-base

    FFmpeg (release/4.3), nv-codec-headers (sdk/9.1)
    Python (3.6.9)

    pip==20.2.3
    setuptools==50.3.0
    packaging==20.4
    numpy==1.19.2
    opencv-python==4.4.0.42
    scipy==1.5.2
    matplotlib==3.3.2
    pandas==1.1.2
    notebook==6.1.4
    scikit-learn==0.23.2
    scikit-image==0.17.2
    albumentations==0.4.6
    Cython==0.29.21
    Pillow==7.2.0
    trafaret-config==2.0.2
    pyzmq==19.0.2
    librosa==0.8.0
    psutil==5.7.2
    dataclasses==0.7

    pytorch

    PyTorch, torchvision, Apex and torch based libraries.
    ghcr.io/osai-ai/dokai:20.09-pytorch

    dokai:20.09-pytorch

    additionally to dokai:20.09-base:

    torch==1.6.0
    torchvision==0.7.0
    pytorch-argus==0.1.2
    timm==0.2.1
    apex (master)

    tensor-stream

    Tensor Stream.
    ghcr.io/osai-ai/dokai:20.09-tensor-stream

    dokai:20.09-tensor-stream

    additionally to dokai:20.09-pytorch:

    tensor-stream==0.4.6 (dev)

    Source code(tar.gz)
    Source code(zip)
Owner
OSAI
OSAI is developing automatic systems that help to analyze a game and provide real-time game data with Computer Vision and AI in Sports.
OSAI
Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation

Info This is the code repository of the work Tackling the Class Imbalance Problem of Deep Learning Based Head and Neck Organ Segmentation from Elias T

2 Apr 20, 2022
Change is Everywhere: Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery (ICCV 2021)

Change is Everywhere Single-Temporal Supervised Object Change Detection in Remote Sensing Imagery by Zhuo Zheng, Ailong Ma, Liangpei Zhang and Yanfei

Zhuo Zheng 125 Dec 13, 2022
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
Implementation of "Debiasing Item-to-Item Recommendations With Small Annotated Datasets" (RecSys '20)

Debiasing Item-to-Item Recommendations With Small Annotated Datasets This is the code for our RecSys '20 paper. Other materials can be found here: Ful

Microsoft 34 Aug 10, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
My 1st place solution at Kaggle Hotel-ID 2021

1st place solution at Kaggle Hotel-ID My 1st place solution at Kaggle Hotel-ID to Combat Human Trafficking 2021. https://www.kaggle.com/c/hotel-id-202

Kohei Ozaki 18 Aug 19, 2022
Mmdet benchmark with python

mmdet_benchmark 本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。 配置与环境 机器配置 CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz GPU:NVIDIA GeForce RTX 3080 10GB 内存:64G 硬盘:1T

杨培文 (Yang Peiwen) 24 May 21, 2022
Repo for CVPR2021 paper "QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information"

QPIC: Query-Based Pairwise Human-Object Interaction Detection with Image-Wide Contextual Information by Masato Tamura, Hiroki Ohashi, and Tomoaki Yosh

105 Dec 23, 2022
EquiBind: Geometric Deep Learning for Drug Binding Structure Prediction

EquiBind: geometric deep learning for fast predictions of the 3D structure in which a small molecule binds to a protein

Hannes Stärk 355 Jan 03, 2023
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
(CVPR 2021) PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds

PAConv: Position Adaptive Convolution with Dynamic Kernel Assembling on Point Clouds by Mutian Xu*, Runyu Ding*, Hengshuang Zhao, and Xiaojuan Qi. Int

CVMI Lab 228 Dec 25, 2022
SMPLpix: Neural Avatars from 3D Human Models

subject0_validation_poses.mp4 Left: SMPL-X human mesh registered with SMPLify-X, middle: SMPLpix render, right: ground truth video. SMPLpix: Neural Av

Sergey Prokudin 292 Dec 30, 2022
Regulatory Instruments for Fair Personalized Pricing.

Fair pricing Source code for WWW 2022 paper Regulatory Instruments for Fair Personalized Pricing. Installation Requirements Linux with Python = 3.6 p

Renzhe Xu 6 Oct 26, 2022
Implementation of BI-RADS-BERT & The Advantages of Section Tokenization.

BI-RADS BERT Implementation of BI-RADS-BERT & The Advantages of Section Tokenization. This implementation could be used on other radiology in house co

1 May 17, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
Testbed of AI Systems Quality Management

qunomon Description A testbed for testing and managing AI system qualities. Demo Sorry. Not deployment public server at alpha version. Requirement Ins

AIST AIRC 15 Nov 27, 2021