A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

Overview

ARES

This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning research focusing on benchmarking adversarial robustness on image classification correctly and comprehensively.

We benchmark the adversarial robustness using 15 attacks and 16 defenses under complete threat models, which is described in the following paper

Benchmarking Adversarial Robustness on Image Classification (CVPR 2020, Oral)

Yinpeng Dong, Qi-An Fu, Xiao Yang, Tianyu Pang, Hang Su, Zihao Xiao, and Jun Zhu.

Feature overview:

  • Built on TensorFlow, and support TensorFlow & PyTorch models with the same interface.
  • Support many attacks in various threat models.
  • Provide ready-to-use pre-trained baseline models (8 on ImageNet & 8 on CIFAR10).
  • Provide efficient & easy-to-use tools for benchmarking models.

Citation

If you find ARES useful, you could cite our paper on benchmarking adversarial robustness using all models, all attacks & defenses supported in ARES. We provide a BibTeX entry of this paper below:

@inproceedings{dong2020benchmarking,
  title={Benchmarking Adversarial Robustness on Image Classification},
  author={Dong, Yinpeng and Fu, Qi-An and Yang, Xiao and Pang, Tianyu and Su, Hang and Xiao, Zihao and Zhu, Jun},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages={321--331},
  year={2020}
}

Installation

Since ARES is still under development, please clone the repository and install the package:

git clone https://github.com/thu-ml/ares
cd ares/
pip install -e .

The requirements.txt includes its dependencies, you might want to change PyTorch's version as well as TensorFlow 1's version. TensorFlow 1.13 or later should work fine.

As for python version, Python 3.5 or later should work fine.

The Boundary attack and the Evolutionary attack require mpi4py and a working MPI with enough localhost slots. For example, you could set the OMPI_MCA_rmaps_base_oversubscribe environment variable to yes for OpenMPI.

Download Datasets & Model Checkpoints

By default, ARES would save datasets and model checkpoints under the ~/.ares directory. You could override it by setting the ARES_RES_DIR environment variable to an alternative location.

We support 2 datasets: CIFAR-10 and ImageNet.

To download the CIFAR-10 dataset, please run:

python3 ares/dataset/cifar10.py

To download the ImageNet dataset, please run:

python3 ares/dataset/imagenet.py

for instructions.

ARES includes third party models' code in the third_party/ directory as git submodules. Before you use these models, you need to initialize these submodules:

git submodule init
git submodule update --depth 1

The example/cifar10 directory and example/imagenet directories include wrappers for these models. Run the model's .py file to download its checkpoint or view instructions for downloading. For example, if you want to download the ResNet56 model's checkpoint, please run:

python3 example/cifar10/resnet56.py

Documentation

We provide API docs as well as tutorials at https://thu-ml-ares.rtfd.io/.

Quick Examples

ARES provides command line interface to run benchmarks. For example, to run distortion benchmark on ResNet56 model for CIFAR-10 dataset using CLI:

python3 -m ares.benchmark.distortion_cli --method mim --dataset cifar10 --offset 0 --count 1000 --output mim.npy example/cifar10/resnet56.py --distortion 0.1 --goal ut --distance-metric l_inf --batch-size 100 --iteration 10 --decay-factor 1.0 --logger

This command would find the minimal adversarial distortion achieved using the MIM attack with decay factor of 1.0 on the example/cifar10/resnet56.py model with L∞ distance and save the result to mim.npy.

For more examples and usages (e.g. how to define new models), please browse our documentation website mentioned before.

Acknowledgement

This work was supported by the National Key Research and Development Program of China, Beijing Academy of Artificial Intelligence (BAAI), a grant from Tsinghua Institute for Guo Qiang.

Owner
Tsinghua Machine Learning Group
Tsinghua Machine Learning Group
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
Jaxtorch (a jax nn library)

Jaxtorch (a jax nn library) This is my jax based nn library. I created this because I was annoyed by the complexity and 'magic'-ness of the popular ja

nshepperd 17 Dec 08, 2022
An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

An official PyTorch Implementation of Boundary-aware Self-supervised Learning for Video Scene Segmentation (BaSSL)

Kakao Brain 72 Dec 28, 2022
YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks

YOLTv5 rapidly detects objects in arbitrarily large aerial or satellite images that far exceed the ~600×600 pixel size typically ingested by deep learning object detection frameworks.

Adam Van Etten 145 Jan 01, 2023
Face recognition with trained classifiers for detecting objects using OpenCV

Face_Detector Face recognition with trained classifiers for detecting objects using OpenCV Libraries required to be installed using pip Command: cv2 n

Chumui Tripura 0 Oct 31, 2021
This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf

Behavior-Sequence-Transformer-Pytorch This is a pytorch implementation for the BST model from Alibaba https://arxiv.org/pdf/1905.06874.pdf This model

Jaime Ferrando Huertas 83 Jan 05, 2023
Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation

Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation (CVPR2019) This is a pytorch implementatio

Yawei Luo 280 Jan 01, 2023
Code for reproducing our paper: LMSOC: An Approach for Socially Sensitive Pretraining

LMSOC: An Approach for Socially Sensitive Pretraining Code for reproducing the paper LMSOC: An Approach for Socially Sensitive Pretraining to appear a

Twitter Research 11 Dec 20, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022
Black-Box-Tuning - Black-Box Tuning for Language-Model-as-a-Service

Black-Box-Tuning Source code for paper "Black-Box Tuning for Language-Model-as-a-Service". Being busy recently, the code in this repo and this tutoria

Tianxiang Sun 149 Jan 04, 2023
Kaggle | 9th place single model solution for TGS Salt Identification Challenge

UNet for segmenting salt deposits from seismic images with PyTorch. General We, tugstugi and xuyuan, have participated in the Kaggle competition TGS S

Erdene-Ochir Tuguldur 276 Dec 20, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

sijie yan 1.1k Dec 25, 2022
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
Official implementation of "Dynamic Anchor Learning for Arbitrary-Oriented Object Detection" (AAAI2021).

DAL This project hosts the official implementation for our AAAI 2021 paper: Dynamic Anchor Learning for Arbitrary-Oriented Object Detection [arxiv] [c

ming71 215 Nov 28, 2022
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
Time series annotation library.

CrowdCurio Time Series Annotator Library The CrowdCurio Time Series Annotation Library implements classification tasks for time series. Features Suppo

CrowdCurio 51 Sep 15, 2022
An original implementation of "MetaICL Learning to Learn In Context" by Sewon Min, Mike Lewis, Luke Zettlemoyer and Hannaneh Hajishirzi

MetaICL: Learning to Learn In Context This includes an original implementation of "MetaICL: Learning to Learn In Context" by Sewon Min, Mike Lewis, Lu

Meta Research 141 Jan 07, 2023