Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation

Overview

Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation (CVPR2019)

This is a pytorch implementation of CLAN.

Oral Presentation Video

Watch the video

Prerequisites

  • Python 3.6
  • GPU Memory >= 11G
  • Pytorch 1.0.0

Getting started

The data folder is structured as follows:

├── data/
│   ├── Cityscapes/     
|   |   ├── gtFine/
|   |   ├── leftImg8bit/
│   ├── GTA5/
|   |   ├── images/
|   |   ├── labels/
│   ├── SYNTHIA/ 
|   |   ├── RAND_CITYSCAPES/
│   └── 			
└── model/
│   ├── DeepLab_resnet_pretrained.pth
...

Train

CUDA_VISIBLE_DEVICES=0 python CLAN_train.py --snapshot-dir ./snapshots/GTA2Cityscapes

Evaluate

CUDA_VISIBLE_DEVICES=0 python CLAN_evaluate.py --restore-from  ./snapshots/GTA2Cityscapes/GTA5_100000.pth --save ./result/GTA2Cityscapes_100000

Our pretrained model is available via Google Drive

Compute IoU

python CLAN_iou.py ./data/Cityscapes/gtFine/val result/GTA2Cityscapes_100000

Tip: The best-performance model might not be the final one in the last epoch. If you want to evaluate every saved models in bulk, please use CLAN_evaluate_bulk.py and CLAN_iou_bulk.py, the result will be saved in an Excel sheet.

CUDA_VISIBLE_DEVICES=0 python CLAN_evaluate_bulk.py
python CLAN_iou_bulk.py

Visualization Results

(a) (b)

(c) (d)

This code is heavily borrowed from the baseline AdaptSegNet

Citation

If you use this code in your research please consider citing

@article{luo2021category,
  title={Category-Level Adversarial Adaptation for Semantic Segmentation using Purified Features},
  author={Luo, Yawei and Liu, Ping and Zheng, Liang and Guan, Tao and Yu, Junqing and Yang, Yi},
  journal={IEEE Transactions on Pattern Analysis \& Machine Intelligence (TPAMI)},
  year={2021},
}

@inproceedings{luo2019Taking,
title={Taking A Closer Look at Domain Shift: Category-level Adversaries for Semantics Consistent Domain Adaptation},
author={Luo, Yawei and Zheng, Liang and Guan, Tao and Yu, Junqing and Yang, Yi},
booktitle={The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2019}
}

Related works

Seg-Uncertainty

Owner
Yawei Luo
Computer Vision
Yawei Luo
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
Multi-Template Mouse Brain MRI Atlas (MBMA): both in-vivo and ex-vivo

Multi-template MRI mouse brain atlas (both in vivo and ex vivo) Mouse Brain MRI atlas (both in-vivo and ex-vivo) (repository relocated from the origin

8 Nov 18, 2022
Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-like Documents.

Value Retrieval with Arbitrary Queries for Form-like Documents Introduction Pytorch Implementation of Value Retrieval with Arbitrary Queries for Form-

Salesforce 13 Sep 15, 2022
Active Offline Policy Selection With Python

Active Offline Policy Selection This is supporting example code for NeurIPS 2021 paper Active Offline Policy Selection by Ksenia Konyushkova*, Yutian

DeepMind 27 Oct 15, 2022
A Research-oriented Federated Learning Library and Benchmark Platform for Graph Neural Networks. Accepted to ICLR'2021 - DPML and MLSys'21 - GNNSys workshops.

FedGraphNN: A Federated Learning System and Benchmark for Graph Neural Networks A Research-oriented Federated Learning Library and Benchmark Platform

FedML-AI 175 Dec 01, 2022
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022
Uni-Fold: Training your own deep protein-folding models

Uni-Fold: Training your own deep protein-folding models. This package provides an implementation of a trainable, Transformer-based deep protein foldin

DP Technology 187 Jan 04, 2023
ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

ICCV2021: Code for 'Spatial Uncertainty-Aware Semi-Supervised Crowd Counting'

Yanda Meng 14 May 13, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
Joint Detection and Identification Feature Learning for Person Search

Person Search Project This repository hosts the code for our paper Joint Detection and Identification Feature Learning for Person Search. The code is

712 Dec 17, 2022
Align before Fuse: Vision and Language Representation Learning with Momentum Distillation

This is the official PyTorch implementation of the ALBEF paper [Blog]. This repository supports pre-training on custom datasets, as well as finetuning on VQA, SNLI-VE, NLVR2, Image-Text Retrieval on

Salesforce 805 Jan 09, 2023
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering

Consensus Learning from Heterogeneous Objectives for One-Class Collaborative Filtering This repository provides the source code of "Consensus Learning

SeongKu-Kang 6 Apr 29, 2022
Resources for our AAAI 2022 paper: "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification".

LOREN Resources for our AAAI 2022 paper (pre-print): "LOREN: Logic-Regularized Reasoning for Interpretable Fact Verification". DEMO System Check out o

Jiangjie Chen 37 Dec 27, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
A denoising autoencoder + adversarial losses and attention mechanisms for face swapping.

faceswap-GAN Adding Adversarial loss and perceptual loss (VGGface) to deepfakes'(reddit user) auto-encoder architecture. Updates Date Update 2018-08-2

3.2k Dec 30, 2022
Sparse-dense operators implementation for Paddle

Sparse-dense operators implementation for Paddle This module implements coo, csc and csr matrix formats and their inter-ops with dense matrices. Feel

北海若 3 Dec 17, 2022
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022