PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages

Overview

PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages

Abstract

NLP applications for code-mixed (CM) or mix-lingual text have gained a significant momentum recently, the main reason being the prevalence of language mixing in social media communications in multi-lingual societies like India, Mexico, Europe, parts of USA etc. Word embeddings are basic building blocks of any NLP system today, yet, word embedding for CM languages is an unexplored territory. The major bottleneck for CM word embeddings is switching points, where the language switches. These locations lack in contextually and statistical systems fail to model this phenomena due to high variance in the seen examples. In this paper we present our initial observations on applying switching point based positional encoding techniques for CM language, specifically Hinglish (Hindi - English). Results are only marginally better than SOTA, but it is evident that positional encoding could be an effective way to train position sensitive language models for CM text.

PESTO Architecture

alt text

Switch Point Attention

alt text

If you find this useful, please cite our paper below:
@inproceedings{ali-etal-relative,
title = {PESTO: Switching Point based Dynamic and Relative Positional Encoding for Code-Mixed Languages},
author = {Mohsin Ali and Kandukuri Sai Teja and Sumanth Manduru and Parth Patwa and Amitava Das}
booktitle =  {Proceedings of the AAAI Conference on Artificial Intelligence},
year = {2022},}
Owner
Mohsin Ali, Mohammed
Final Year Student at Indian Institute of Information Technology, Sri City
Mohsin Ali, Mohammed
Robocop is your personal mini voice assistant made using Python.

Robocop-VoiceAssistant To use this project, you should have python installed in your system. If you don't have python installed, install it beforehand

Sohil Khanduja 3 Feb 26, 2022
Shared Attention for Multi-label Zero-shot Learning

Shared Attention for Multi-label Zero-shot Learning Overview This repository contains the implementation of Shared Attention for Multi-label Zero-shot

dathuynh 26 Dec 14, 2022
A list of all papers and resoureces on Semantic Segmentation

Semantic-Segmentation A list of all papers and resoureces on Semantic Segmentation. Dataset importance SemanticSegmentation_DL Some implementation of

Alan Tang 1.1k Dec 12, 2022
SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches

SketchEdit: Mask-Free Local Image Manipulation with Partial Sketches [Paper]  [Project Page]  [Interactive Demo]  [Supplementary Material]        Usag

215 Dec 25, 2022
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019
Image to Image translation, image generataton, few shot learning

Semi-supervised Learning for Few-shot Image-to-Image Translation [paper] Abstract: In the last few years, unpaired image-to-image translation has witn

yaxingwang 49 Nov 18, 2022
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022
Official Implementation of PCT

Official Implementation of PCT Prerequisites python == 3.8.5 Please make sure you have the following libraries installed: numpy torch=1.4.0 torchvisi

32 Nov 21, 2022
Transformer Huffman coding - Complete Huffman coding through transformer

Transformer_Huffman_coding Complete Huffman coding through transformer 2022/2/19

3 May 19, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal, multi-exposure and multi-focus image fusion.

U2Fusion Code of U2Fusion: a unified unsupervised image fusion network for multiple image fusion tasks, including multi-modal (VIS-IR, medical), multi

Han Xu 129 Dec 11, 2022
SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab

CORNELLSASLAB SAS output to EXCEL converter for Cornell/MIT Language and acquisition lab Instructions: This python code can be used to convert SAS out

2 Jan 26, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
Roadmap to becoming a machine learning engineer in 2020

Roadmap to becoming a machine learning engineer in 2020, inspired by web-developer-roadmap.

Chris Hoyean Song 1.7k Dec 29, 2022
Deep generative modeling for time-stamped heterogeneous data, enabling high-fidelity models for a large variety of spatio-temporal domains.

Neural Spatio-Temporal Point Processes [arxiv] Ricky T. Q. Chen, Brandon Amos, Maximilian Nickel Abstract. We propose a new class of parameterizations

Facebook Research 75 Dec 19, 2022
Código de um painel de auto atendimento feito em Python.

Painel de Auto-Atendimento O intuito desse projeto era fazer em Python um programa que simulasse um painel de auto atendimento, no maior estilo Mac Do

Calebe Alves Evangelista 2 Nov 09, 2022
A neuroanatomy-based augmented reality experience powered by computer vision. Features 3D visuals of the Atlas Brain Map slices.

Brain Augmented Reality (AR) A neuroanatomy-based augmented reality experience powered by computer vision that features 3D visuals of the Atlas Brain

Yasmeen Brain 10 Oct 06, 2022
Simple image captioning model - CLIP prefix captioning.

CLIP prefix captioning. Inference Notebook: 🥳 New: 🥳 Our technical papar is finally out! Official implementation for the paper "ClipCap: CLIP Prefix

688 Jan 04, 2023
An experimental technique for efficiently exploring neural architectures.

SMASH: One-Shot Model Architecture Search through HyperNetworks An experimental technique for efficiently exploring neural architectures. This reposit

Andy Brock 478 Aug 04, 2022