A data-driven maritime port simulator

Related tags

Deep Learningpyseidon
Overview

PySeidon - A Data-Driven Maritime Port Simulator 🌊

Image of the simulation software

Extendable and modular software for maritime port simulation.

This software uses entity-component system approach making it highly customizable for various end goals and easily built upon.

Overview

PySeidon was primarily designed for port scenario testing, but can be used for a variety of other tasks. Software can be adapted to simulate any maritime port provided that the required data is available. The simulator can be tested with different factors, such as:

  • New/different anchorage location
  • Different number of tugboat/pilots available
  • Different priority order depending on ship class/size
  • Etc...

PySeidon's output can then give useful insights whether the given change improves certain Key Performance Indicators (check this repository for scripts to analyse simulation results).

PySeidon can be used to create new data for various downstream tasks (e.g. anomaly detection), approximate impact on Key Performance Indicators of some decision, novelty introduced in a port. The supplemental visualization software can be used to analyse general (or created by simulation) AIS data over time or analyse simulation states (for debugging).

Installation and Demo

The framework is bundled with an example model to get you started. To run it first install the dependencies by running pip install -r requirements.txt. Pip might complain about libgeos not being installed on your system. On Ubuntu you can install it by running sudo apt-get install libgeos-dev.

Once the required libraries are installed run the example model with the following command (it may take a bit for the first vessel to spawn)

python main.py          \
    --out sim-output    \
    --step 10           \
    --verbose y         \
    --graphics y        \
    --cache y           \
    --seed 567

Features

  • Simulation of the following agents and infrastructure elements
    • Agents: vessel, tugboats, pilots
    • Infrastructure components: berths, anchorages, tugboat rendezvous and storage locations, pilot rendezvous and storage locations
    • Introduction of anomalies such as randomized berth inspections, tugboat malfunctions, anomalous vessel velocity. These can be used to create datasets that are currently not available
  • Visualization of the simulation: infrastructure components and agents, including an overview of vessel and berth information at any moment in time
  • Simulation of anomalies: random berth inspection, tugboat malfunctions, unusual vessel velocities
  • Clean way of conducting experiments of the simulation (multiple runs, no graphics, aggregating output data of the simulation)
  • The simulation engine relies on the input data, minimal actual code modification (model and main.py) is required to adapt to different maritime ports if no additional features are to be implemented

Documentation

For detailed instructions how to install and use PySeidon, see the Documentation.

Future work

  • Various external factors such as weather, tide, etc.
  • Implement proper nautical rules
  • Loading simulation from a saved state
  • GUI to enable non-experts be able to use the software
  • Boatmen agent
  • Better vessel acceleration model, PID controller
  • Automatic data analysis at the end of simulation
a generic C++ library for image analysis

VIGRA Computer Vision Library Copyright 1998-2013 by Ullrich Koethe This file is part of the VIGRA computer vision library. You may use,

Ullrich Koethe 378 Dec 30, 2022
This is the PyTorch implementation of GANs N’ Roses: Stable, Controllable, Diverse Image to Image Translation

Official PyTorch repo for GAN's N' Roses. Diverse im2im and vid2vid selfie to anime translation.

1.1k Jan 01, 2023
Your interactive network visualizing dashboard

Your interactive network visualizing dashboard Documentation: Here What is Jaal Jaal is a python based interactive network visualizing tool built usin

Mohit 177 Jan 04, 2023
Codebase for INVASE: Instance-wise Variable Selection - 2019 ICLR

Codebase for "INVASE: Instance-wise Variable Selection" Authors: Jinsung Yoon, James Jordon, Mihaela van der Schaar Paper: Jinsung Yoon, James Jordon,

Jinsung Yoon 50 Nov 11, 2022
Pytorch implementation of few-shot semantic image synthesis

Few-shot Semantic Image Synthesis Using StyleGAN Prior Our method can synthesize photorealistic images from dense or sparse semantic annotations using

40 Sep 26, 2022
Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings

Text2Music Emotion Embedding Text-to-Music Retrieval using Pre-defined/Data-driven Emotion Embeddings Reference Emotion Embedding Spaces for Matching

Minz Won 50 Dec 05, 2022
Implementation for our AAAI2021 paper (Entity Structure Within and Throughout: Modeling Mention Dependencies for Document-Level Relation Extraction).

SSAN Introduction This is the pytorch implementation of the SSAN model (see our AAAI2021 paper: Entity Structure Within and Throughout: Modeling Menti

benfeng 69 Nov 15, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
A simple image/video to Desmos graph converter run locally

Desmos Bezier Renderer A simple image/video to Desmos graph converter run locally Sample Result Setup Install dependencies apt update apt install git

Kevin JY Cui 339 Dec 23, 2022
Affine / perspective transformation in Pose Estimation with Tensorflow 2

Pose Transformation Affine / Perspective transformation in Pose Estimation with Tensorflow 2 Introduction 이 repo는 pose estimation을 연구하고 개발하는 데 도움이 되기

Kim Junho 1 Dec 22, 2021
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
PyTorch code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised DA

PyTorch Code for SENTRY: Selective Entropy Optimization via Committee Consistency for Unsupervised Domain Adaptation Viraj Prabhu, Shivam Khare, Deeks

Viraj Prabhu 46 Dec 24, 2022
Dense matching library based on PyTorch

Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at

Prune Truong 399 Dec 28, 2022
Official repo for BMVC2021 paper ASFormer: Transformer for Action Segmentation

ASFormer: Transformer for Action Segmentation This repo provides training & inference code for BMVC 2021 paper: ASFormer: Transformer for Action Segme

42 Dec 23, 2022
Reproduce partial features of DeePMD-kit using PyTorch.

DeePMD-kit on PyTorch For better understand DeePMD-kit, we implement its partial features using PyTorch and expose interface consuing descriptors. Tec

Shaochen Shi 8 Dec 17, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic Neural Rendering"

Website | ArXiv | Get Start | Video PIRenderer The source code of the ICCV2021 paper "PIRenderer: Controllable Portrait Image Generation via Semantic

Ren Yurui 261 Jan 09, 2023
EZ graph is an easy to use AI solution that allows you to make and train your neural networks without a single line of code.

EZ-Graph EZ Graph is a GUI that allows users to make and train neural networks without writing a single line of code. Requirements python 3 pandas num

1 Jul 03, 2022
PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)

PSTR (CVPR2022) This code is an official implementation of "PSTR: End-to-End One-Step Person Search With Transformers (CVPR2022)". End-to-end one-step

Jiale Cao 28 Dec 13, 2022