I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

Overview

An Image Captioning codebase

This is a codebase for image captioning research.

It supports:

A simple demo colab notebook is available here

Requirements

  • Python 3
  • PyTorch 1.3+ (along with torchvision)
  • cider (already been added as a submodule)
  • coco-caption (already been added as a submodule) (Remember to follow initialization steps in coco-caption/README.md)
  • yacs
  • lmdbdict

Install

If you have difficulty running the training scripts in tools. You can try installing this repo as a python package:

python -m pip install -e .

Pretrained models

Checkout MODEL_ZOO.md.

If you want to do evaluation only, you can then follow this section after downloading the pretrained models (and also the pretrained resnet101 or precomputed bottomup features, see data/README.md).

Train your own network on COCO/Flickr30k

Prepare data.

We now support both flickr30k and COCO. See details in data/README.md. (Note: the later sections assume COCO dataset; it should be trivial to use flickr30k.)

Start training

$ python tools/train.py --id fc --caption_model newfc --input_json data/cocotalk.json --input_fc_dir data/cocotalk_fc --input_att_dir data/cocotalk_att --input_label_h5 data/cocotalk_label.h5 --batch_size 10 --learning_rate 5e-4 --learning_rate_decay_start 0 --scheduled_sampling_start 0 --checkpoint_path log_fc --save_checkpoint_every 6000 --val_images_use 5000 --max_epochs 30

or

$ python tools/train.py --cfg configs/fc.yml --id fc

The train script will dump checkpoints into the folder specified by --checkpoint_path (default = log_$id/). By default only save the best-performing checkpoint on validation and the latest checkpoint to save disk space. You can also set --save_history_ckpt to 1 to save every checkpoint.

To resume training, you can specify --start_from option to be the path saving infos.pkl and model.pth (usually you could just set --start_from and --checkpoint_path to be the same).

To checkout the training curve or validation curve, you can use tensorboard. The loss histories are automatically dumped into --checkpoint_path.

The current command use scheduled sampling, you can also set --scheduled_sampling_start to -1 to turn off scheduled sampling.

If you'd like to evaluate BLEU/METEOR/CIDEr scores during training in addition to validation cross entropy loss, use --language_eval 1 option, but don't forget to pull the submodule coco-caption.

For all the arguments, you can specify them in a yaml file and use --cfg to use the configurations in that yaml file. The configurations in command line will overwrite cfg file if there are conflicts.

For more options, see opts.py.

Train using self critical

First you should preprocess the dataset and get the cache for calculating cider score:

$ python scripts/prepro_ngrams.py --input_json data/dataset_coco.json --dict_json data/cocotalk.json --output_pkl data/coco-train --split train

Then, copy the model from the pretrained model using cross entropy. (It's not mandatory to copy the model, just for back-up)

$ bash scripts/copy_model.sh fc fc_rl

Then

$ python tools/train.py --id fc_rl --caption_model newfc --input_json data/cocotalk.json --input_fc_dir data/cocotalk_fc --input_att_dir data/cocotalk_att --input_label_h5 data/cocotalk_label.h5 --batch_size 10 --learning_rate 5e-5 --start_from log_fc_rl --checkpoint_path log_fc_rl --save_checkpoint_every 6000 --language_eval 1 --val_images_use 5000 --self_critical_after 30 --cached_tokens coco-train-idxs --max_epoch 50 --train_sample_n 5

or

$ python tools/train.py --cfg configs/fc_rl.yml --id fc_rl

You will see a huge boost on Cider score, : ).

A few notes on training. Starting self-critical training after 30 epochs, the CIDEr score goes up to 1.05 after 600k iterations (including the 30 epochs pertraining).

Generate image captions

Evaluate on raw images

Note: this doesn't work for models trained with bottomup feature. Now place all your images of interest into a folder, e.g. blah, and run the eval script:

$ python tools/eval.py --model model.pth --infos_path infos.pkl --image_folder blah --num_images 10

This tells the eval script to run up to 10 images from the given folder. If you have a big GPU you can speed up the evaluation by increasing batch_size. Use --num_images -1 to process all images. The eval script will create an vis.json file inside the vis folder, which can then be visualized with the provided HTML interface:

$ cd vis
$ python -m SimpleHTTPServer

Now visit localhost:8000 in your browser and you should see your predicted captions.

Evaluate on Karpathy's test split

$ python tools/eval.py --dump_images 0 --num_images 5000 --model model.pth --infos_path infos.pkl --language_eval 1 

The defualt split to evaluate is test. The default inference method is greedy decoding (--sample_method greedy), to sample from the posterior, set --sample_method sample.

Beam Search. Beam search can increase the performance of the search for greedy decoding sequence by ~5%. However, this is a little more expensive. To turn on the beam search, use --beam_size N, N should be greater than 1.

Evaluate on COCO test set

$ python tools/eval.py --input_json cocotest.json --input_fc_dir data/cocotest_bu_fc --input_att_dir data/cocotest_bu_att --input_label_h5 none --num_images -1 --model model.pth --infos_path infos.pkl --language_eval 0

You can download the preprocessed file cocotest.json, cocotest_bu_att and cocotest_bu_fc from link.

Miscellanea

Using cpu. The code is currently defaultly using gpu; there is even no option for switching. If someone highly needs a cpu model, please open an issue; I can potentially create a cpu checkpoint and modify the eval.py to run the model on cpu. However, there's no point using cpus to train the model.

Train on other dataset. It should be trivial to port if you can create a file like dataset_coco.json for your own dataset.

Live demo. Not supported now. Welcome pull request.

For more advanced features:

Checkout ADVANCED.md.

Reference

If you find this repo useful, please consider citing (no obligation at all):

@article{luo2018discriminability,
  title={Discriminability objective for training descriptive captions},
  author={Luo, Ruotian and Price, Brian and Cohen, Scott and Shakhnarovich, Gregory},
  journal={arXiv preprint arXiv:1803.04376},
  year={2018}
}

Of course, please cite the original paper of models you are using (You can find references in the model files).

Acknowledgements

Thanks the original neuraltalk2 and awesome PyTorch team.

Owner
Ruotian(RT) Luo
Phd student at TTIC
Ruotian(RT) Luo
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022
Campsite Reservation Finder

yellowstone-camping UPDATE: yellowstone-camping is being expanded and renamed to camply. The updated tool now interfaces with the Recreation.gov API a

Justin Flannery 233 Jan 08, 2023
《K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters》(2020)

K-Adapter: Infusing Knowledge into Pre-Trained Models with Adapters This repository is the implementation of the paper "K-Adapter: Infusing Knowledge

Microsoft 118 Dec 13, 2022
Code of the lileonardo team for the 2021 Emotion and Theme Recognition in Music task of MediaEval 2021

Emotion and Theme Recognition in Music The repository contains code for the submission of the lileonardo team to the 2021 Emotion and Theme Recognitio

Vincent Bour 8 Aug 02, 2022
This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Self-Diagnosis and Self-Debiasing This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based

Timo Schick 62 Dec 12, 2022
Python with OpenCV - MediaPip Framework Hand Detection

Python HandDetection Python with OpenCV - MediaPip Framework Hand Detection Explore the docs » Contact Me About The Project It is a Computer vision pa

2 Jan 07, 2022
PyTorch implementation of SQN based on CloserLook3D's encoder

SQN_pytorch This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, che

PointCloudYC 1 Oct 21, 2021
Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning

Evolutionary Population Curriculum for Scaling Multi-Agent Reinforcement Learning This is the code for implementing the MADDPG algorithm presented in

97 Dec 21, 2022
code for CVPR paper Zero-shot Instance Segmentation

Code for CVPR2021 paper Zero-shot Instance Segmentation Code requirements python: python3.7 nvidia GPU pytorch1.1.0 GCC =5.4 NCCL 2 the other python

zhengye 86 Dec 13, 2022
Implementation of paper "Graph Condensation for Graph Neural Networks"

GCond A PyTorch implementation of paper "Graph Condensation for Graph Neural Networks" Code will be released soon. Stay tuned :) Abstract We propose a

Wei Jin 66 Dec 04, 2022
The first public PyTorch implementation of Attentive Recurrent Comparators

arc-pytorch PyTorch implementation of Attentive Recurrent Comparators by Shyam et al. A blog explaining Attentive Recurrent Comparators Visualizing At

Sanyam Agarwal 150 Oct 14, 2022
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
LoL Runes Recommender With Python

LoL-Runes-Recommender Para ejecutar la aplicación se debe llamar a execute_app.p

Sebastián Salinas 1 Jan 10, 2022
TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022)

TCTrack: Temporal Contexts for Aerial Tracking (CVPR2022) Ziang Cao and Ziyuan Huang and Liang Pan and Shiwei Zhang and Ziwei Liu and Changhong Fu In

Intelligent Vision for Robotics in Complex Environment 100 Dec 19, 2022
Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems

Reverse engineering recurrent neural networks with Jacobian switching linear dynamical systems This repository is the official implementation of Rever

6 Aug 25, 2022
A Marvelous ChatBot implement using PyTorch.

PyTorch Marvelous ChatBot [Update] it's 2019 now, previously model can not catch up state-of-art now. So we just move towards the future a transformer

JinTian 223 Oct 18, 2022
Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network.

Dewarping Document Image By Displacement Flow Estimation with Fully Convolutional Network

111 Dec 27, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
Face recognize system

FRS Face_recognize_system This project contains my work that target on solving some problems of FRS: Face detection: Retinaface Face anti-spoofing: Fo

Tran Anh Tuan 4 Nov 18, 2021
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022