Pytorch implementation of Compressive Transformers, from Deepmind

Overview

Compressive Transformer in Pytorch

Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-range language modelling. I will also combine this with an idea from another paper that adds gating at the residual intersection. The memory and the gating may be synergistic, and lead to further improvements in both language modeling as well as reinforcement learning.

PyPI version

Install

$ pip install compressive_transformer_pytorch

Usage

import torch
from compressive_transformer_pytorch import CompressiveTransformer

model = CompressiveTransformer(
    num_tokens = 20000,
    emb_dim = 128,                 # embedding dimensions, embedding factorization from Albert paper
    dim = 512,
    depth = 12,
    seq_len = 1024,
    mem_len = 1024,                # memory length
    cmem_len = 1024 // 4,          # compressed memory buffer length
    cmem_ratio = 4,                # compressed memory ratio, 4 was recommended in paper
    reconstruction_loss_weight = 1,# weight to place on compressed memory reconstruction loss
    attn_dropout = 0.1,            # dropout post-attention
    ff_dropout = 0.1,              # dropout in feedforward
    attn_layer_dropout = 0.1,      # dropout for attention layer output
    gru_gated_residual = True,     # whether to gate the residual intersection, from 'Stabilizing Transformer for RL' paper
    mogrify_gru = False,           # experimental feature that adds a mogrifier for the update and residual before gating by the GRU
    memory_layers = range(6, 13),  # specify which layers to use long-range memory, from 'Do Transformers Need LR Memory' paper
    ff_glu = True                  # use GLU variant for feedforward
)

inputs = torch.randint(0, 256, (1, 2048))
masks = torch.ones_like(inputs).bool()

segments = inputs.reshape(1, -1, 1024).transpose(0, 1)
masks = masks.reshape(1, -1, 1024).transpose(0, 1)

logits, memories, aux_loss = model(segments[0], mask = masks[0])
logits,        _, aux_loss = model(segments[1], mask = masks[1], memories = memories)

# memories is a named tuple that contains the memory (mem) and the compressed memory (cmem)

When training, you can use the AutoregressiveWrapper to have memory management across segments taken care of for you. As easy as it gets.

import torch
from compressive_transformer_pytorch import CompressiveTransformer
from compressive_transformer_pytorch import AutoregressiveWrapper

model = CompressiveTransformer(
    num_tokens = 20000,
    dim = 512,
    depth = 6,
    seq_len = 1024,
    mem_len = 1024,
    cmem_len = 256,
    cmem_ratio = 4,
    memory_layers = [5,6]
).cuda()

model = AutoregressiveWrapper(model)

inputs = torch.randint(0, 20000, (1, 2048 + 1)).cuda()

for loss, aux_loss, _ in model(inputs, return_loss = True):
    (loss + aux_loss).backward()
    # optimizer step and zero grad

# ... after much training ...

# generation is also greatly simplified and automated away
# just pass in the prime, which can be 1 start token or any length
# all is taken care of for you

prime = torch.ones(1, 1).cuda()  # assume 1 is start token
sample = model.generate(prime, 4096)

Citations

@misc{rae2019compressive,
    title   = {Compressive Transformers for Long-Range Sequence Modelling},
    author  = {Jack W. Rae and Anna Potapenko and Siddhant M. Jayakumar and Timothy P. Lillicrap},
    year    = {2019},
    eprint  = {1911.05507},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
@misc{parisotto2019stabilizing,
    title   = {Stabilizing Transformers for Reinforcement Learning},
    author  = {Emilio Parisotto and H. Francis Song and Jack W. Rae and Razvan Pascanu and Caglar Gulcehre and Siddhant M. Jayakumar and Max Jaderberg and Raphael Lopez Kaufman and Aidan Clark and Seb Noury and Matthew M. Botvinick and Nicolas Heess and Raia Hadsell},
    year    = {2019},
    eprint  = {1910.06764},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
@inproceedings{rae-razavi-2020-transformers,
    title   = "Do Transformers Need Deep Long-Range Memory?",
    author  = "Rae, Jack  and
      Razavi, Ali",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month   = jul,
    year    = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url     = "https://www.aclweb.org/anthology/2020.acl-main.672"
}
@article{Shazeer2019FastTD,
    title   = {Fast Transformer Decoding: One Write-Head is All You Need},
    author  = {Noam Shazeer},
    journal = {ArXiv},
    year    = {2019},
    volume  = {abs/1911.02150}
}
@misc{shazeer2020glu,
    title   = {GLU Variants Improve Transformer},
    author  = {Noam Shazeer},
    year    = {2020},
    url     = {https://arxiv.org/abs/2002.05202}
}
@misc{lan2019albert,
    title       = {ALBERT: A Lite BERT for Self-supervised Learning of Language Representations},
    author      = {Zhenzhong Lan and Mingda Chen and Sebastian Goodman and Kevin Gimpel and Piyush Sharma and Radu Soricut},
    year        = {2019},
    url         = {https://arxiv.org/abs/1909.11942}
}
@misc{ding2021erniedoc,
    title   = {ERNIE-Doc: A Retrospective Long-Document Modeling Transformer},
    author  = {Siyu Ding and Junyuan Shang and Shuohuan Wang and Yu Sun and Hao Tian and Hua Wu and Haifeng Wang},
    year    = {2021},
    eprint  = {2012.15688},
    archivePrefix = {arXiv},
    primaryClass = {cs.CL}
}
Comments
  • aux_loss does not update any weigth

    aux_loss does not update any weigth

    Hi lucidrains, thanks for your implementation, it is very elegant and helped me a lot with my disertation. Anyway I can't understand a particular: it seems like aux_loss is not related to any weight because of the detaching in the last part of the SelfAttention layer. With the following code, for example, I get that there is no layer optimized by aux_loss:

    import torch
    from compressive_transformer_pytorch import CompressiveTransformer
    from compressive_transformer_pytorch import AutoregressiveWrapper
    
    model = CompressiveTransformer(
        num_tokens = 20000,
        dim = 512,
        depth = 6,
        seq_len = 1024,
        mem_len = 1024,
        cmem_len = 256,
        cmem_ratio = 4,
        memory_layers = [5,6]
    ).cuda()
    
    model = AutoregressiveWrapper(model)
    
    inputs = torch.randint(0, 20000, (1, 1024)).cuda()
    
    optimizer = torch.optim.Adam(model.parameters())
    
    for loss, aux_loss, _ in model(inputs, return_loss = True):
        optimizer.zero_grad(set_to_none=True)
        loss.backward(retain_graph=True)
        print("OPTIMIZED BY LOSS ************************************************************")
        for module_name, parameter in model.named_parameters():
            if parameter.grad is not None:
                print(module_name)
        optimizer.zero_grad(set_to_none=True)
        aux_loss.backward(retain_graph=True)
        print("OPTIMIZED BY AUX_LOSS ************************************************************")
        for module_name, parameter in model.named_parameters():
            if parameter.grad is not None:
                print(module_name)
    

    I am not expert about the PyTorch mechanisms, so maybe I am getting something wrong. Again thank you

    opened by StefanoBerti 3
  • How to use this for speech/audio generation?

    How to use this for speech/audio generation?

    Great work Phil! In their paper, the authors applied this model to speech modeling, how would you advise on what should I change to use for speech. Because in speech, the data are signals, we do not have num_tokens, nor do we have emb_dim. Our data input is simply, [batch, channel, time]. Any advice?

    opened by jinglescode 3
  • [Error] NameError: name 'math' is not defined in compressive_transformer_pytorch.py

    [Error] NameError: name 'math' is not defined in compressive_transformer_pytorch.py

    hello, I run code "examples/enwik8_simple" now, and I got error as follows:

    train.py:65: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead X = np.fromstring(file.read(int(95e6)), dtype=np.uint8) training: 0%| | 0/100000 [00:00<?, ?it/s] Traceback (most recent call last): File "train.py", line 101, in <module> for mlm_loss, aux_loss, is_last in model(next(train_loader), max_batch_size = MAX_BATCH_SIZE, return_loss = True): File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/compressive_transformer_pytorch/autoregressive_wrapper.py", line 151, in forward logits, new_mem, aux_loss = self.net(xi_seg_b, mask = mask_seg_b, memories = mem, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/compressive_transformer_pytorch/compressive_transformer_pytorch.py", line 338, in f orward x, = ff(x) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/compressive_transformer_pytorch/compressive_transformer_pytorch.py", line 84, in fo rward out = self.fn(x, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/compressive_transformer_pytorch/compressive_transformer_pytorch.py", line 106, in f orward return self.fn(x, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/compressive_transformer_pytorch/compressive_transformer_pytorch.py", line 140, in f orward x = self.act(x) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/compressive_transformer_pytorch/compressive_transformer_pytorch.py", line 122, in f orward return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) NameError: name 'math' is not defined

    so I inserted "import math" into compressive_transformer_pytorch.py file and it work well. I hope you modify compressive_transformer_pytorch.py code.

    opened by dinoSpeech 3
  • Training enwik8 but loss fail to converge

    Training enwik8 but loss fail to converge

    Hi lucidrains, I appreciate your implementation very much, and it helps me a lot with understanding compressive transformer. However when I tried running your code (enwik8 and exactly the same code in github), and the loss failed to converge after 100 epochs. Is this in expectation ? Or should I do other additional effort to improve, for example tokenizing the raw data in enwik8 and remove all the xml tags ? The figure below is the training and validation loss while I train enwik8 with the same code as in github.

    截圖 2021-03-26 下午5 40 16 截圖 2021-03-26 下午5 41 22

    Thanks and look forward to your reply!

    opened by KaiPoChang 2
  • Details about text generation

    Details about text generation

    Hi lucidrains, Thank you for your excellent code. I am curious about the generation scripts. Could you tell me how to generate text with the compressive transformer? Because it has the compressive memory, maybe we cannot use the current predicted word as the input for the next generation (input length ==1). In addition, if the prompt has 100 words and we use tokens [0:100], tokens[1:101], tokens[2:102]... as the input for the following timesteps, the tokens[1:100] may overlap with the memory, because the memory already contains hidden states for tokens[1:100].

    I would be very appeciated if you can provide the generation scripts!

    Thank you

    opened by theseventhflow 3
  • Links to original tf code - fyi

    Links to original tf code - fyi

    After reading deepmind blog post I was looking forward to downloading model but no luck. Looking forward to your implementation.

    You may be aware of this post and link but if not this is the coder's original tf implementation. Hope it helps.

    Copy of comment to original model request:

    https://github.com/huggingface/transformers/issues/4688

    Interested in model weights too but currently not available. Author does mention releasing tf code here:

    https://news.ycombinator.com/item?id=22290227

    Requires tf 1.15+ and deepmind/sonnet ver 1.36. Link to python script here:

    https://github.com/deepmind/sonnet/blob/cd5b5fa48e15e4d020f744968f5209949ebe750f/sonnet/python/modules/nets/transformer.py#L915

    Have tried running as-is but doesn't appear to have options for training on custom data as per the paper and available data sets.

    opened by GenTxt 8
Releases(0.4.0)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Trading and Backtesting environment for training reinforcement learning agent or simple rule base algo.

TradingGym TradingGym is a toolkit for training and backtesting the reinforcement learning algorithms. This was inspired by OpenAI Gym and imitated th

Yvictor 1.1k Jan 02, 2023
Package for working with hypernetworks in PyTorch.

Package for working with hypernetworks in PyTorch.

Christian Henning 71 Jan 05, 2023
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022
Python interface for SmartRF Sniffer 2 Firmware

#TI SmartRF Packet Sniffer 2 Python Interface TI Makes available a nice packet sniffer firmware, which interfaces to Wireshark. You can see this proje

Colin O'Flynn 3 May 18, 2021
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
PyTorch implementation of the ExORL: Exploratory Data for Offline Reinforcement Learning

ExORL: Exploratory Data for Offline Reinforcement Learning This is an original PyTorch implementation of the ExORL framework from Don't Change the Alg

Denis Yarats 52 Jan 01, 2023
Implementation of the Chamfer Distance as a module for pyTorch

Chamfer Distance for pyTorch This is an implementation of the Chamfer Distance as a module for pyTorch. It is written as a custom C++/CUDA extension.

Christian Diller 205 Jan 05, 2023
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
Code for CoMatch: Semi-supervised Learning with Contrastive Graph Regularization

CoMatch: Semi-supervised Learning with Contrastive Graph Regularization (Salesforce Research) This is a PyTorch implementation of the CoMatch paper [B

Salesforce 107 Dec 14, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry

SynergyNet 3DV 2021: Synergy between 3DMM and 3D Landmarks for Accurate 3D Facial Geometry Cho-Ying Wu, Qiangeng Xu, Ulrich Neumann, CGIT Lab at Unive

Cho-Ying Wu 239 Jan 06, 2023
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
Training RNNs as Fast as CNNs

News SRU++, a new SRU variant, is released. [tech report] [blog] The experimental code and SRU++ implementation are available on the dev branch which

ASAPP Research 2.1k Jan 01, 2023
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
GUI for a Vocal Remover that uses Deep Neural Networks.

GUI for a Vocal Remover that uses Deep Neural Networks.

4.4k Jan 07, 2023
Facial expression detector

A tensorflow convolutional neural network model to detect facial expressions.

Carlos Tardón Rubio 5 Apr 20, 2022
Geometric Algebra package for JAX

JAXGA - JAX Geometric Algebra GitHub | Docs JAXGA is a Geometric Algebra package on top of JAX. It can handle high dimensional algebras by storing onl

Robin Kahlow 36 Dec 22, 2022
NovelD: A Simple yet Effective Exploration Criterion

NovelD: A Simple yet Effective Exploration Criterion Intro This is an implementation of the method proposed in NovelD: A Simple yet Effective Explorat

29 Dec 05, 2022
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022