Pytorch implementation of Compressive Transformers, from Deepmind

Overview

Compressive Transformer in Pytorch

Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-range language modelling. I will also combine this with an idea from another paper that adds gating at the residual intersection. The memory and the gating may be synergistic, and lead to further improvements in both language modeling as well as reinforcement learning.

PyPI version

Install

$ pip install compressive_transformer_pytorch

Usage

import torch
from compressive_transformer_pytorch import CompressiveTransformer

model = CompressiveTransformer(
    num_tokens = 20000,
    emb_dim = 128,                 # embedding dimensions, embedding factorization from Albert paper
    dim = 512,
    depth = 12,
    seq_len = 1024,
    mem_len = 1024,                # memory length
    cmem_len = 1024 // 4,          # compressed memory buffer length
    cmem_ratio = 4,                # compressed memory ratio, 4 was recommended in paper
    reconstruction_loss_weight = 1,# weight to place on compressed memory reconstruction loss
    attn_dropout = 0.1,            # dropout post-attention
    ff_dropout = 0.1,              # dropout in feedforward
    attn_layer_dropout = 0.1,      # dropout for attention layer output
    gru_gated_residual = True,     # whether to gate the residual intersection, from 'Stabilizing Transformer for RL' paper
    mogrify_gru = False,           # experimental feature that adds a mogrifier for the update and residual before gating by the GRU
    memory_layers = range(6, 13),  # specify which layers to use long-range memory, from 'Do Transformers Need LR Memory' paper
    ff_glu = True                  # use GLU variant for feedforward
)

inputs = torch.randint(0, 256, (1, 2048))
masks = torch.ones_like(inputs).bool()

segments = inputs.reshape(1, -1, 1024).transpose(0, 1)
masks = masks.reshape(1, -1, 1024).transpose(0, 1)

logits, memories, aux_loss = model(segments[0], mask = masks[0])
logits,        _, aux_loss = model(segments[1], mask = masks[1], memories = memories)

# memories is a named tuple that contains the memory (mem) and the compressed memory (cmem)

When training, you can use the AutoregressiveWrapper to have memory management across segments taken care of for you. As easy as it gets.

import torch
from compressive_transformer_pytorch import CompressiveTransformer
from compressive_transformer_pytorch import AutoregressiveWrapper

model = CompressiveTransformer(
    num_tokens = 20000,
    dim = 512,
    depth = 6,
    seq_len = 1024,
    mem_len = 1024,
    cmem_len = 256,
    cmem_ratio = 4,
    memory_layers = [5,6]
).cuda()

model = AutoregressiveWrapper(model)

inputs = torch.randint(0, 20000, (1, 2048 + 1)).cuda()

for loss, aux_loss, _ in model(inputs, return_loss = True):
    (loss + aux_loss).backward()
    # optimizer step and zero grad

# ... after much training ...

# generation is also greatly simplified and automated away
# just pass in the prime, which can be 1 start token or any length
# all is taken care of for you

prime = torch.ones(1, 1).cuda()  # assume 1 is start token
sample = model.generate(prime, 4096)

Citations

@misc{rae2019compressive,
    title   = {Compressive Transformers for Long-Range Sequence Modelling},
    author  = {Jack W. Rae and Anna Potapenko and Siddhant M. Jayakumar and Timothy P. Lillicrap},
    year    = {2019},
    eprint  = {1911.05507},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
@misc{parisotto2019stabilizing,
    title   = {Stabilizing Transformers for Reinforcement Learning},
    author  = {Emilio Parisotto and H. Francis Song and Jack W. Rae and Razvan Pascanu and Caglar Gulcehre and Siddhant M. Jayakumar and Max Jaderberg and Raphael Lopez Kaufman and Aidan Clark and Seb Noury and Matthew M. Botvinick and Nicolas Heess and Raia Hadsell},
    year    = {2019},
    eprint  = {1910.06764},
    archivePrefix = {arXiv},
    primaryClass = {cs.LG}
}
@inproceedings{rae-razavi-2020-transformers,
    title   = "Do Transformers Need Deep Long-Range Memory?",
    author  = "Rae, Jack  and
      Razavi, Ali",
    booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
    month   = jul,
    year    = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url     = "https://www.aclweb.org/anthology/2020.acl-main.672"
}
@article{Shazeer2019FastTD,
    title   = {Fast Transformer Decoding: One Write-Head is All You Need},
    author  = {Noam Shazeer},
    journal = {ArXiv},
    year    = {2019},
    volume  = {abs/1911.02150}
}
@misc{shazeer2020glu,
    title   = {GLU Variants Improve Transformer},
    author  = {Noam Shazeer},
    year    = {2020},
    url     = {https://arxiv.org/abs/2002.05202}
}
@misc{lan2019albert,
    title       = {ALBERT: A Lite BERT for Self-supervised Learning of Language Representations},
    author      = {Zhenzhong Lan and Mingda Chen and Sebastian Goodman and Kevin Gimpel and Piyush Sharma and Radu Soricut},
    year        = {2019},
    url         = {https://arxiv.org/abs/1909.11942}
}
@misc{ding2021erniedoc,
    title   = {ERNIE-Doc: A Retrospective Long-Document Modeling Transformer},
    author  = {Siyu Ding and Junyuan Shang and Shuohuan Wang and Yu Sun and Hao Tian and Hua Wu and Haifeng Wang},
    year    = {2021},
    eprint  = {2012.15688},
    archivePrefix = {arXiv},
    primaryClass = {cs.CL}
}
Comments
  • aux_loss does not update any weigth

    aux_loss does not update any weigth

    Hi lucidrains, thanks for your implementation, it is very elegant and helped me a lot with my disertation. Anyway I can't understand a particular: it seems like aux_loss is not related to any weight because of the detaching in the last part of the SelfAttention layer. With the following code, for example, I get that there is no layer optimized by aux_loss:

    import torch
    from compressive_transformer_pytorch import CompressiveTransformer
    from compressive_transformer_pytorch import AutoregressiveWrapper
    
    model = CompressiveTransformer(
        num_tokens = 20000,
        dim = 512,
        depth = 6,
        seq_len = 1024,
        mem_len = 1024,
        cmem_len = 256,
        cmem_ratio = 4,
        memory_layers = [5,6]
    ).cuda()
    
    model = AutoregressiveWrapper(model)
    
    inputs = torch.randint(0, 20000, (1, 1024)).cuda()
    
    optimizer = torch.optim.Adam(model.parameters())
    
    for loss, aux_loss, _ in model(inputs, return_loss = True):
        optimizer.zero_grad(set_to_none=True)
        loss.backward(retain_graph=True)
        print("OPTIMIZED BY LOSS ************************************************************")
        for module_name, parameter in model.named_parameters():
            if parameter.grad is not None:
                print(module_name)
        optimizer.zero_grad(set_to_none=True)
        aux_loss.backward(retain_graph=True)
        print("OPTIMIZED BY AUX_LOSS ************************************************************")
        for module_name, parameter in model.named_parameters():
            if parameter.grad is not None:
                print(module_name)
    

    I am not expert about the PyTorch mechanisms, so maybe I am getting something wrong. Again thank you

    opened by StefanoBerti 3
  • How to use this for speech/audio generation?

    How to use this for speech/audio generation?

    Great work Phil! In their paper, the authors applied this model to speech modeling, how would you advise on what should I change to use for speech. Because in speech, the data are signals, we do not have num_tokens, nor do we have emb_dim. Our data input is simply, [batch, channel, time]. Any advice?

    opened by jinglescode 3
  • [Error] NameError: name 'math' is not defined in compressive_transformer_pytorch.py

    [Error] NameError: name 'math' is not defined in compressive_transformer_pytorch.py

    hello, I run code "examples/enwik8_simple" now, and I got error as follows:

    train.py:65: DeprecationWarning: The binary mode of fromstring is deprecated, as it behaves surprisingly on unicode inputs. Use frombuffer instead X = np.fromstring(file.read(int(95e6)), dtype=np.uint8) training: 0%| | 0/100000 [00:00<?, ?it/s] Traceback (most recent call last): File "train.py", line 101, in <module> for mlm_loss, aux_loss, is_last in model(next(train_loader), max_batch_size = MAX_BATCH_SIZE, return_loss = True): File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/compressive_transformer_pytorch/autoregressive_wrapper.py", line 151, in forward logits, new_mem, aux_loss = self.net(xi_seg_b, mask = mask_seg_b, memories = mem, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/compressive_transformer_pytorch/compressive_transformer_pytorch.py", line 338, in f orward x, = ff(x) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/compressive_transformer_pytorch/compressive_transformer_pytorch.py", line 84, in fo rward out = self.fn(x, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/compressive_transformer_pytorch/compressive_transformer_pytorch.py", line 106, in f orward return self.fn(x, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/compressive_transformer_pytorch/compressive_transformer_pytorch.py", line 140, in f orward x = self.act(x) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__ result = self.forward(*input, **kwargs) File "/home/donghyun/donghyun/anaconda3/envs/pytorch/lib/python3.7/site-packages/compressive_transformer_pytorch/compressive_transformer_pytorch.py", line 122, in f orward return 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) NameError: name 'math' is not defined

    so I inserted "import math" into compressive_transformer_pytorch.py file and it work well. I hope you modify compressive_transformer_pytorch.py code.

    opened by dinoSpeech 3
  • Training enwik8 but loss fail to converge

    Training enwik8 but loss fail to converge

    Hi lucidrains, I appreciate your implementation very much, and it helps me a lot with understanding compressive transformer. However when I tried running your code (enwik8 and exactly the same code in github), and the loss failed to converge after 100 epochs. Is this in expectation ? Or should I do other additional effort to improve, for example tokenizing the raw data in enwik8 and remove all the xml tags ? The figure below is the training and validation loss while I train enwik8 with the same code as in github.

    截圖 2021-03-26 下午5 40 16 截圖 2021-03-26 下午5 41 22

    Thanks and look forward to your reply!

    opened by KaiPoChang 2
  • Details about text generation

    Details about text generation

    Hi lucidrains, Thank you for your excellent code. I am curious about the generation scripts. Could you tell me how to generate text with the compressive transformer? Because it has the compressive memory, maybe we cannot use the current predicted word as the input for the next generation (input length ==1). In addition, if the prompt has 100 words and we use tokens [0:100], tokens[1:101], tokens[2:102]... as the input for the following timesteps, the tokens[1:100] may overlap with the memory, because the memory already contains hidden states for tokens[1:100].

    I would be very appeciated if you can provide the generation scripts!

    Thank you

    opened by theseventhflow 3
  • Links to original tf code - fyi

    Links to original tf code - fyi

    After reading deepmind blog post I was looking forward to downloading model but no luck. Looking forward to your implementation.

    You may be aware of this post and link but if not this is the coder's original tf implementation. Hope it helps.

    Copy of comment to original model request:

    https://github.com/huggingface/transformers/issues/4688

    Interested in model weights too but currently not available. Author does mention releasing tf code here:

    https://news.ycombinator.com/item?id=22290227

    Requires tf 1.15+ and deepmind/sonnet ver 1.36. Link to python script here:

    https://github.com/deepmind/sonnet/blob/cd5b5fa48e15e4d020f744968f5209949ebe750f/sonnet/python/modules/nets/transformer.py#L915

    Have tried running as-is but doesn't appear to have options for training on custom data as per the paper and available data sets.

    opened by GenTxt 8
Releases(0.4.0)
Owner
Phil Wang
Working with Attention. It's all we need
Phil Wang
Repository for MuSiQue: Multi-hop Questions via Single-hop Question Composition

🎵 MuSiQue: Multi-hop Questions via Single-hop Question Composition This is the repository for our paper "MuSiQue: Multi-hop Questions via Single-hop

21 Jan 02, 2023
Simple Dynamic Batching Inference

Simple Dynamic Batching Inference 解决了什么问题? 众所周知,Batch对于GPU上深度学习模型的运行效率影响很大。。。 是在Inference时。搜索、推荐等场景自带比较大的batch,问题不大。但更多场景面临的往往是稀碎的请求(比如图片服务里一次一张图)。 如果

116 Jan 01, 2023
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
A deep learning framework for historical document image analysis

DIVA-DAF Description A deep learning framework for historical document image analysis. How to run Install dependencies # clone project git clone https

9 Aug 04, 2022
Official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Recognition" in AAAI2022.

AimCLR This is an official PyTorch implementation of "Contrastive Learning from Extremely Augmented Skeleton Sequences for Self-supervised Action Reco

Gty 44 Dec 17, 2022
Stochastic Scene-Aware Motion Prediction

Stochastic Scene-Aware Motion Prediction [Project Page] [Paper] Description This repository contains the training code for MotionNet and GoalNet of SA

Mohamed Hassan 31 Dec 09, 2022
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

Yuming Jiang 151 Dec 26, 2022
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Salesforce 1.3k Dec 28, 2022
Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Video Conferencing"

One-Shot Free-View Neural Talking Head Synthesis Unofficial pytorch implementation of paper "One-Shot Free-View Neural Talking-Head Synthesis for Vide

ZLH 406 Dec 23, 2022
code for Image Manipulation Detection by Multi-View Multi-Scale Supervision

MVSS-Net Code and models for ICCV 2021 paper: Image Manipulation Detection by Multi-View Multi-Scale Supervision Update 22.02.17, Pretrained model for

dong_chengbo 131 Dec 30, 2022
Patch SVDD for Image anomaly detection

Patch SVDD Patch SVDD for Image anomaly detection. Paper: https://arxiv.org/abs/2006.16067 (published in ACCV 2020). Original Code : https://github.co

Hong-Jeongmin 0 Dec 03, 2021
Our implementation used for the MICCAI 2021 FLARE Challenge titled 'Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements'.

Efficient Multi-Organ Segmentation Using SpatialConfiguartion-Net with Low GPU Memory Requirements Our implementation used for the MICCAI 2021 FLARE C

Franz Thaler 3 Sep 27, 2022
Depth image based mouse cursor visual haptic

Depth image based mouse cursor visual haptic How to run it. Install pyqt5. Install python modules pip install Pillow pip install numpy For illustrati

Xiong Jie 17 Dec 20, 2022
Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models.

WECHSEL Code for WECHSEL: Effective initialization of subword embeddings for cross-lingual transfer of monolingual language models. arXiv: https://arx

Institute of Computational Perception 45 Dec 29, 2022
Alpha-Zero - Telegram Group Manager Bot Written In Python Using Pyrogram

✨ Alpha Zero Bot ✨ Telegram Group Manager Bot + Userbot Written In Python Using

1 Feb 17, 2022
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
[ICCV 2021] Counterfactual Attention Learning for Fine-Grained Visual Categorization and Re-identification

Counterfactual Attention Learning Created by Yongming Rao*, Guangyi Chen*, Jiwen Lu, Jie Zhou This repository contains PyTorch implementation for ICCV

Yongming Rao 90 Dec 31, 2022