Learning Time-Critical Responses for Interactive Character Control

Overview

Learning Time-Critical Responses for Interactive Character Control

teaser

Abstract

This code implements the paper Learning Time-Critical Responses for Interactive Character Control. This system implements teacher-student framework to learn time-critically responsive policies, which guarantee the time-to-completion between user inputs and their associated responses regardless of the size and composition of the motion databases. This code is written in java and Python, based on Tensorflow2.

Publications

Kyungho Lee, Sehee Min, Sunmin Lee, and Jehee Lee. 2021. Learning Time-Critical Responses for Interactive Character Control. ACM Trans. Graph. 40, 4, 147. (SIGGRAPH 2021)

Project page: http://mrl.snu.ac.kr/research/ProjectAgile/Agile.html

Paper: http://mrl.snu.ac.kr/research/ProjectAgile/AGILE_2021_SIGGRAPH_author.pdf

Youtube: https://www.youtube.com/watch?v=rQKuvxg5ZHc

How to install

This code is implemented with Java and Python, and was developed using Eclipse on Windows. A Windows 64-bit environment is required to run the code.

Requirements

Install JDK 1.8

Java SE Development Kit 8 Downloads

Install Eclipse

Install Eclipse IDE for Java Developers

Install Python 3.6

https://www.python.org/downloads/release/python-368/

Install pydev to Eclipse

https://www.pydev.org/download.html

Install cuda and cudnn 10.0

CUDA Toolkit 10.0 Archive

NVIDIA cuDNN

Install Visual C++ Redistributable for VS2012

Laplacian Motion Editing(PmQmJNI.dll) is implemented in C++, and VS2012 is required to run it.

Visual C++ Redistributable for Visual Studio 2012 Update 4

Install JEP(Java Embedded Python)

Java Embedded Python

This library requires a part of the Visual Studio installation. I don't know exactly which ones are needed, but I'm guessing .net framework 3.5, VC++ 2015.3 v14.00(v140). Installing Visual Studio 2017 or later may be helpful.

Install Tensoflow 1.14.0

pip install tensorflow-gpu==1.14.0

Install this repository

We recommend downloading through Git in Eclipse environment.

  1. Open Git Perspective in Elcipse
  2. Paste repository url and clone repository ( 'https://git.ncsoft.net/scm/private_khlee/private-khlee-test.git' )
  3. Select all projects in Working Tree
  4. Right click and select Import Projects, and Import existing Eclipse projects.

Or you can just download the repository as Zip file and extract it, and import it using File->Import->General->Existing Projects into Workspace in Eclipse.

Install third party library

This code uses Interactive Character Animation by Learning Multi-Objective Control for learning the student policy.

Download required third pary library files(ThirdPartyDlls.zip) and extract it to mrl.motion.critical folder.

Dataset

The entire data used in the paper cannot be published due to copyright issues. This repository contains only minimal motion dataset for algorithm validation. SNU Motion Database was used for martial arts movements, CMU Motion Database was used for locomotion.

How to run

Eclipse

All of the instructions below are assumed to be executed based on Eclipse. Executable java files are grouped in package mrl.motion.critical.run of project mrl.motion.critical.

  • You can directly open source file with Ctrl+Shift+R
  • You can run the currently open source file with Ctrl+F11.
  • You can configure program arguments in Run->Run Configurations menu.

Pre-trained student policy

You can see the pre-trained network by running RuntimeMartialArtsControlModule.java. Pre-trained network file is located at mrl.python.neural\train\martial_arts_sp_da

  • 1, 2 : walk, run
  • 3,4,5,6 : martial arts actions
  • q,w,e,r,t : control critical response time

How to train

  1. Data Annotation & Configuration
    • You can check motion data list and annotation information by executing MAnnotationRun.java.
  2. Model Configuration
    • Action list, critical response time of each action, user input model and error metric is defined at MartialArtsConfig.java
  3. Preprocessing
    • You can precompute data table for pruning by executing DP_Preprocessing.java
    • The data file will be located at mrl.motion.critical\output\dp_cache
  4. Training teacher policy
    • You can train teacher policy by executing LearningTeacherPolicy.java
    • The result will be located at mrl.motion.critical\train_rl
  5. Training data for student policy
    • You can generate training data for student policy by executing StudentPolicyDataGeneration.java
    • The result will be located at mrl.python.neural\train
  6. Training student policy
    • You can train student policy by executing mrl.python.neural\train_rl.py
    • You need to set program arguments in Run->Run Configurations menu.
      • arguments format :
      • ex) martial_arts_sp new 0.0001
  7. Running student policy
    • You can see the trained student policy by running RuntimeMartialArtsControlModule.java.
    • This class will be load student policy located at mrl.python.neural\train.
Owner
Movement Research Lab
Our research group explores new ways of understanding, representing, and animating human movements.
Movement Research Lab
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
Stock-Prediction - prediction of stock market movements using sentiment analysis and deep learning.

Stock-Prediction- In this project, we aim to enhance the prediction of stock market movements using sentiment analysis and deep learning. We divide th

5 Jan 25, 2022
This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing.

Feedback Prize - Evaluating Student Writing This is the solution for 2nd rank in Kaggle competition: Feedback Prize - Evaluating Student Writing. The

Udbhav Bamba 41 Dec 14, 2022
KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

KITTI-360 Annotation Tool is a framework that developed based on python(cherrypy + jinja2 + sqlite3) as the server end and javascript + WebGL as the front end.

86 Dec 12, 2022
Official PyTorch implementation for Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers, a novel method to visualize any Transformer-based network. Including examples for DETR, VQA.

PyTorch Implementation of Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers 1 Using Colab Please notic

Hila Chefer 489 Jan 07, 2023
Naszilla is a Python library for neural architecture search (NAS)

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your ow

270 Jan 03, 2023
x-transformers-paddle 2.x version

x-transformers-paddle x-transformers-paddle 2.x version paddle 2.x版本 https://github.com/lucidrains/x-transformers 。 requirements paddlepaddle-gpu==2.2

yujun 7 Dec 08, 2022
Weighted QMIX: Expanding Monotonic Value Function Factorisation

This repo contains the cleaned-up code that was used in "Weighted QMIX: Expanding Monotonic Value Function Factorisation"

whirl 82 Dec 29, 2022
Pretraining on Dynamic Graph Neural Networks

Pretraining on Dynamic Graph Neural Networks Our article is PT-DGNN and the code is modified based on GPT-GNN Requirements python 3.6 Ubuntu 18.04.5 L

7 Dec 17, 2022
Byte-based multilingual transformer TTS for low-resource/few-shot language adaptation.

One model to speak them all 🌎 Audio Language Text ▷ Chinese 人人生而自由,在尊严和权利上一律平等。 ▷ English All human beings are born free and equal in dignity and rig

Mutian He 60 Nov 14, 2022
Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images

Anchor Retouching via Model Interaction for Robust Object Detection in Aerial Images In this paper, we present an effective Dynamic Enhancement Anchor

13 Dec 09, 2022
A library for implementing Decentralized Graph Neural Network algorithms.

decentralized-gnn A package for implementing and simulating decentralized Graph Neural Network algorithms for classification of peer-to-peer nodes. De

Multimedia Knowledge and Social Analytics Lab 5 Nov 07, 2022
Implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTorch

Neural Distance Embeddings for Biological Sequences Official implementation of Neural Distance Embeddings for Biological Sequences (NeuroSEED) in PyTo

Gabriele Corso 56 Dec 23, 2022
A GOOD REPRESENTATION DETECTS NOISY LABELS

A GOOD REPRESENTATION DETECTS NOISY LABELS This code is a PyTorch implementation of the paper: Prerequisites Python 3.6.9 PyTorch 1.7.1 Torchvision 0.

<a href=[email protected]"> 64 Jan 04, 2023
This repository is to support contributions for tools for the Project CodeNet dataset hosted in DAX

The goal of Project CodeNet is to provide the AI-for-Code research community with a large scale, diverse, and high quality curated dataset to drive innovation in AI techniques.

International Business Machines 1.2k Jan 04, 2023
Source code, data, and evaluation details for “Cross-Lingual Citations in English Papers: A Large-Scale Analysis of Prevalence, Formation, and Ramifications”

Analysis of cross-lingual citations in English papers Contents initial_analysis Source code, data, and evaluation details as published at ICADL2020 ci

Tarek Saier 1 Oct 27, 2022
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER

WangRui 46 Dec 29, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022
Sharpness-Aware Minimization for Efficiently Improving Generalization

Sharpness-Aware-Minimization-TensorFlow This repository provides a minimal implementation of sharpness-aware minimization (SAM) (Sharpness-Aware Minim

Sayak Paul 54 Dec 08, 2022
Unofficial implementation of the Involution operation from CVPR 2021

involution_pytorch Unofficial PyTorch implementation of "Involution: Inverting the Inherence of Convolution for Visual Recognition" by Li et al. prese

Rishabh Anand 46 Dec 07, 2022