Self-supervised Deep LiDAR Odometry for Robotic Applications

Overview

DeLORA: Self-supervised Deep LiDAR Odometry for Robotic Applications

Overview

This is the corresponding code to the above paper ("Self-supervised Learning of LiDAR Odometry for Robotic Applications") which is published at the International Conference on Robotics and Automation (ICRA) 2021. The code is provided by the Robotics Systems Lab at ETH Zurich, Switzerland.

** Authors:** Julian Nubert ([email protected]) , Shehryar Khattak , Marco Hutter

title_img

Copyright IEEE

Python Setup

We provide a conda environment for running our code.

Conda

The conda environment is very comfortable to use in combination with PyTorch because only NVidia drivers are needed. The Installation of suitable CUDA and CUDNN libraries is all handle by Conda.

  • Install conda: link
  • To set up the conda environment run the following command:
conda env create -f conda/DeLORA-py3.9.yml

This installs an environment including GPU-enabled PyTorch, including any needed CUDA and cuDNN dependencies.

  • Activate the environment:
conda activate DeLORA-py3.9
  • Install the package to set all paths correctly:
pip3 install -e .

ROS Setup

For running ROS code in the ./src/ros_utils/ folder you need to have ROS installed (link). We recommend Ubuntu 20.04 and ROS Noetic due to its native Python3 support. For performing inference in Python2.7, convert your PyTorch model with ./scripts/convert_pytorch_models.py and run an older PyTorch version (<1.3).

ros-numpy

In any case you need to install ros-numpy if you want to make use of the provided rosnode:

sudo apt install ros-<distro>-ros-numpy

Datasets and Preprocessing

Instructions on how to use and preprocess the datasets can be found in the ./datasets/ folder. We provide scripts for doing the preprocessing for:

  1. general rosbags containing LiDAR scans,
  2. and for the KITTI dataset in its own format.

Example: KITTI Dataset

LiDAR Scans

Download the "velodyne laster data" from the official KITTI odometry evaluation ( 80GB): link. Put it to <delora_ws>/datasets/kitti, where kitti contains /data_odometry_velodyne/dataset/sequences/00..21.

Groundtruth poses

Please also download the groundtruth poses here. Make sure that the files are located at <delora_ws>/datasets/kitti, where kitti contains /data_odometry_poses/dataset/poses/00..10.txt.

Preprocessing

In the file ./config/deployment_options.yaml make sure to set datasets: ["kitti"]. Then run

preprocess_data.py

Custom Dataset

If you want to add an own dataset please add its sensor specifications to ./config/config_datasets.yaml and ./config/config_datasets_preprocessing.yaml. Information that needs to be added is the dataset name, its sequences and its sensor specifications such as vertical field of view and number of rings.

Deploy

After preprocessing, for each dataset we assume the following hierarchical structure: dataset_name/sequence/scan (see previous dataset example). Our code natively supports training and/or testing on various datasets with various sequences at the same time.

Training

Run the training with the following command:

run_training.py

The training will be executed for the dataset(s) specified in ./config/deployment_options.yaml. You will be prompted to enter a name for this training run, which will be used for reference in the MLFlow logging.

Custom Settings

For custom settings and hyper-parameters please have a look in ./config/.

By default loading from RAM is disabled. If you have enough memory, enable it in ./config/deployment_options.yaml. When loading from disk, the first few iterations are sometimes slow due to I/O, but it should accelerate quite quickly. For storing the KITTI training set entirely in memory, roughly 50GB of RAM are required.

Continuing Training

For continuing training provide the --checkpoint flag with a path to the model checkpoint to the script above.

Visualizing progress and results

For visualizing progress we use MLFlow. It allows for simple logging of parameters, metrics, images, and artifacts. Artifacts could e.g. also be whole TensorBoard logfiles. To visualize the training progress execute (from DeLORA folder):

mlflow ui 

The MLFlow can then be visualized in your browser following the link in the terminal.

Testing

Testing can be run along the line:

run_testing.py --checkpoint <path_to_checkpoint>

The checkpoint can be found in MLFlow after training. It runs testing for the dataset specified in ./config/deployment_options.yaml.

We provide an exemplary trained model in ./checkpoints/kitti_example.pth.

ROS-Node

This ROS-node takes the pretrained model at location <model_location> and performs inference; i.e. it predicts and publishes the relative transformation between incoming point cloud scans. The variable <dataset> should contain the name of the dataset in the config files, e.g. kitti, in order to load the corresponding parameters. Topic and frame names can be specified in the following way:

run_rosnode.py --checkpoint <model_location> --dataset <dataset> --lidar_topic=<name_of_lidar_topic> --lidar_frame=<name_of_lidar_frame>

The resulting odometry will be published as a nav_msgs.msg.Odometry message under the topic /delora/odometry .

Example: DARPA Dataset

For the darpa dataset this could look as follows:

run_rosnode.py --checkpoint ~/Downloads/checkpoint_epoch_0.pth --dataset darpa --lidar_topic "/sherman/lidar_points" --lidar_frame sherman/ouster_link

Comfort Functions

Additional functionalities are provided in ./bin/ and ./scripts/.

Visualization of Normals (mainly for debugging)

Located in ./bin/, see the readme-file ./dataset/README.md for more information.

Creation of Rosbags for KITTI Dataset

After starting a roscore, conversion from KITTI dataset format to a rosbag can be done using the following command:

python scripts/convert_kitti_to_rosbag.py

The point cloud scans will be contained in the topic "/velodyne_points", located in the frame velodyne. E.g. for the created rosbag, our provided rosnode can be run using the following command:

run_rosnode.py --checkpoint ~/Downloads/checkpoint_epoch_30.pth --lidar_topic "/velodyne_points" --lidar_frame "velodyne"

Convert PyTorch Model to older PyTorch Compatibility

Converion of the new model <path_to_model>/model.pth to old (compatible with < PyTorch1.3) <path_to_model>/model_py27.pth can be done with the following:

python scripts/convert_pytorch_models.py --checkpoint <path_to_model>/model

Note that there is no .pth ending in the script.

Time The Network

The execution time of the network can be timed using:

python scripts/time_network.py

Paper

Thank you for citing DeLORA (ICRA-2021) if you use any of this code.

@inproceedings{nubert2021self,
  title={Self-supervised Learning of LiDAR Odometry for Robotic Applications},
  author={Nubert, Julian and Khattak, Shehryar and Hutter, Marco},
  booktitle={IEEE International Conference on Robotics and Automation (ICRA)},
  year={2021},
  organization={IEEE}
}

Dependencies

Dependencies are specified in ./conda/DeLORA-py3.9.yml and ./pip/requirements.txt.

Tuning

If the result does not achieve the desired performance, please have a look at the normal estimation, since the loss is usually dominated by the plane-to-plane loss, which is impacted by noisy normal estimates. For the results presented in the paper we picked some reasonable parameters without further fine-tuning, but we are convinced that less noisy normal estimates would lead to an even better convergence.

Owner
Robotic Systems Lab - Legged Robotics at ETH Zürich
The Robotic Systems Lab investigates the development of machines and their intelligence to operate in rough and challenging environments.
Robotic Systems Lab - Legged Robotics at ETH Zürich
Analysis of rationale selection in neural rationale models

Neural Rationale Interpretability Analysis We analyze the neural rationale models proposed by Lei et al. (2016) and Bastings et al. (2019), as impleme

Yiming Zheng 3 Aug 31, 2022
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023
Out-of-distribution detection using the pNML regret. NeurIPS2021

OOD Detection Load conda environment conda env create -f environment.yml or install requirements: while read requirement; do conda install --yes $requ

Koby Bibas 23 Dec 02, 2022
A pre-trained language model for social media text in Spanish

RoBERTuito A pre-trained language model for social media text in Spanish READ THE FULL PAPER Github Repository RoBERTuito is a pre-trained language mo

25 Dec 29, 2022
This is an official PyTorch implementation of Task-Adaptive Neural Network Search with Meta-Contrastive Learning (NeurIPS 2021, Spotlight).

NeurIPS 2021 (Spotlight): Task-Adaptive Neural Network Search with Meta-Contrastive Learning This is an official PyTorch implementation of Task-Adapti

Wonyong Jeong 15 Nov 21, 2022
GNPy: Optical Route Planning and DWDM Network Optimization

GNPy is an open-source, community-developed library for building route planning and optimization tools in real-world mesh optical networks

Telecom Infra Project 140 Dec 19, 2022
PySOT - SenseTime Research platform for single object tracking, implementing algorithms like SiamRPN and SiamMask.

PySOT is a software system designed by SenseTime Video Intelligence Research team. It implements state-of-the-art single object tracking algorit

STVIR 4.1k Dec 29, 2022
ICCV2021 - A New Journey from SDRTV to HDRTV.

ICCV2021 - A New Journey from SDRTV to HDRTV.

XyChen 82 Dec 27, 2022
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022
Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB)

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
Place holder for HOPE: a human-centric and task-oriented MT evaluation framework using professional post-editing

HOPE: A Task-Oriented and Human-Centric Evaluation Framework Using Professional Post-Editing Towards More Effective MT Evaluation Place holder for dat

Lifeng Han 1 Apr 25, 2022
Contrastive Learning for Metagenomic Binning

CLMB A simple framework for CLMB - a novel deep Contrastive Learningfor Metagenomic Binning Created by Pengfei Zhang, senior of Department of Computer

1 Sep 14, 2022
A complete, self-contained example for training ImageNet at state-of-the-art speed with FFCV

ffcv ImageNet Training A minimal, single-file PyTorch ImageNet training script designed for hackability. Run train_imagenet.py to get... ...high accur

FFCV 92 Dec 31, 2022
An implementation of paper `Real-time Convolutional Neural Networks for Emotion and Gender Classification` with PaddlePaddle.

简介 通过PaddlePaddle框架复现了论文 Real-time Convolutional Neural Networks for Emotion and Gender Classification 中提出的两个模型,分别是SimpleCNN和MiniXception。利用 imdb_crop

8 Mar 11, 2022
source code and pre-trained/fine-tuned checkpoint for NAACL 2021 paper LightningDOT

LightningDOT: Pre-training Visual-Semantic Embeddings for Real-Time Image-Text Retrieval This repository contains source code and pre-trained/fine-tun

Siqi 65 Dec 26, 2022
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)

Huan Wang 47 Nov 28, 2022
Code for Active Learning at The ImageNet Scale.

Code for Active Learning at The ImageNet Scale. This repository implements many popular active learning algorithms and allows training with torch's DDP.

Zeyad Emam 47 Dec 12, 2022