Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Related tags

Deep LearningMIGCN
Overview

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos

Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Model Pipeline

model-pipeline

Usage

Environment Settings

We use the PyTorch framework.

  • Python version: 3.7.0
  • PyTorch version: 1.4.0

Get Code

Clone the repository:

git clone https://github.com/zmzhang2000/MIGCN.git
cd MIGCN

Data Preparation

Charades-STA

ActivityNet

  • Download the preprocessed annotations of ActivityNet.
  • Download the C3D features of ActivityNet.
  • Process the C3D feature according to process_activitynet_c3d() in data/preprocess/preprocess.py.
  • Save them in data/activitynet.

Pre-trained Models

  • Download the checkpoints of Charades-STA and ActivityNet.
  • Save them in checkpoints

Data Generation

We provide the generation procedure of all MIGCN data.

  • The raw data is listed in data/raw_data/download.sh.
  • The preprocess code is in data/preprocess.

Training

Train MIGCN on Charades-STA with I3D feature:

python main.py --dataset charades --feature i3d

Train MIGCN on ActivityNet with C3D feature:

python main.py --dataset activitynet --feature c3d

Testing

Test MIGCN on Charades-STA with I3D feature:

python main.py --dataset charades --feature i3d --test --model_load_path checkpoints/$MODEL_CHECKPOINT

Test MIGCN on ActivityNet with C3D feature:

python main.py --dataset activitynet --feature c3d --test --model_load_path checkpoints/$MODEL_CHECKPOINT

Other Hyper-parameters

List other hyper-parameters by:

python main.py -h

Reference

Please cite the following paper if MIGCN is helpful for your research

@ARTICLE{9547801,
  author={Zhang, Zongmeng and Han, Xianjing and Song, Xuemeng and Yan, Yan and Nie, Liqiang},
  journal={IEEE Transactions on Image Processing}, 
  title={Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos}, 
  year={2021},
  volume={30},
  number={},
  pages={8265-8277},
  doi={10.1109/TIP.2021.3113791}}
Owner
Zongmeng Zhang
Zongmeng Zhang
Text mining project; Using distilBERT to predict authors in the classification task authorship attribution.

DistilBERT-Text-mining-authorship-attribution Dataset used: https://www.kaggle.com/azimulh/tweets-data-for-authorship-attribution-modelling/version/2

1 Jan 13, 2022
Python script that allows you to automatically setup your Growtopia server.

AutoSetup Python script that allows you to automatically setup your Growtopia server. How To Use Firstly, install all the required modules that used i

Aspire 3 Mar 06, 2022
3D-printable hand-strapped keyboard

Note: This repo has not been cleaned up and prepared for general consumption at all. This is just a dump of the project files. If there is any interes

Wojciech Baranowski 41 Dec 31, 2022
An End-to-End Machine Learning Library to Optimize AUC (AUROC, AUPRC).

Logo by Zhuoning Yuan LibAUC: A Machine Learning Library for AUC Optimization Website | Updates | Installation | Tutorial | Research | Github LibAUC a

Optimization for AI 176 Jan 07, 2023
Training deep models using anime, illustration images.

animeface deep models for anime images. Datasets anime-face-dataset Anime faces collected from Getchu.com. Based on Mckinsey666's dataset. 63.6K image

Tomoya Sawada 61 Dec 25, 2022
Faster Convex Lipschitz Regression

Faster Convex Lipschitz Regression This reepository provides a python implementation of our Faster Convex Lipschitz Regression algorithm with GPU and

Ali Siahkamari 0 Nov 19, 2021
MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research

MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research.The pipeline is based on nn-UNet an

QIMP team 30 Jan 01, 2023
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma 🔥 News 2021-10

Jingtao Zhan 99 Dec 27, 2022
HyperSeg: Patch-wise Hypernetwork for Real-time Semantic Segmentation Official PyTorch Implementation

: We present a novel, real-time, semantic segmentation network in which the encoder both encodes and generates the parameters (weights) of the decoder. Furthermore, to allow maximal adaptivity, the w

Yuval Nirkin 182 Dec 14, 2022
PyTorch implementation of our Adam-NSCL algorithm from our CVPR2021 (oral) paper "Training Networks in Null Space for Continual Learning"

Adam-NSCL This is a PyTorch implementation of Adam-NSCL algorithm for continual learning from our CVPR2021 (oral) paper: Title: Training Networks in N

Shipeng Wang 34 Dec 21, 2022
Deep Implicit Moving Least-Squares Functions for 3D Reconstruction

DeepMLS: Deep Implicit Moving Least-Squares Functions for 3D Reconstruction This repository contains the implementation of the paper: Deep Implicit Mo

103 Dec 22, 2022
Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World

Legged Robots that Keep on Learning Official codebase for Legged Robots that Keep on Learning: Fine-Tuning Locomotion Policies in the Real World, whic

Laura Smith 70 Dec 07, 2022
Code, Models and Datasets for OpenViDial Dataset

OpenViDial This repo contains downloading instructions for the OpenViDial dataset in 《OpenViDial: A Large-Scale, Open-Domain Dialogue Dataset with Vis

119 Dec 08, 2022
CARL provides highly configurable contextual extensions to several well-known RL environments.

CARL (context adaptive RL) provides highly configurable contextual extensions to several well-known RL environments.

AutoML-Freiburg-Hannover 51 Dec 28, 2022
Jingju baseline - A baseline model of our project of Beijing opera script generation

Jingju Baseline It is a baseline of our project about Beijing opera script gener

midon 1 Jan 14, 2022
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Automated Side Channel Analysis of Media Software with Manifold Learning Official implementation of USENIX Security 2022 paper: Automated Side Channel

Yuanyuan Yuan 175 Jan 07, 2023
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
Implementing Vision Transformer (ViT) in PyTorch

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

2 Dec 24, 2021
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022