This repository contains datasets and baselines for benchmarking Chinese text recognition.

Overview

Benchmarking-Chinese-Text-Recognition

This repository contains datasets and baselines for benchmarking Chinese text recognition. Please see the corresponding paper for more details regarding the datasets, baselines, the empirical study, etc.

Highlights

🌟 All datasets are transformed to lmdb format for convenient usage.

🌟 The experimental results of all baselines are available at link with format (index [pred] [gt]).

🌟 The code and trained weights of TransOCR (one of the baselines) are available at link for direct use.

Updates

Jan 3, 2022: This repo is made publicly available. The corresponding paper is available at arXiv.

Nov 26, 2021: We upload the lmdb datasets publicly to Google Drive and BaiduCloud.

Download

  • The lmdb scene, web and document datasets are available in BaiduCloud (psw:v2rm) and GoogleDrive.

  • For the handwriting setting, please first download it at SCUT-HCCDoc and divide it into training, validation, and testing sets following link.

  • We also collected HWDB2.0-2.2 and ICDAR2013 handwriting datasets from CASIA and ICDAR2013 competition for futher research. Datasets are available at BaiduCloud (psw:lfaq) and GoogleDrive.

Datasets

Alt text The image demonstrates the four datasets used in our benchmark including Scene, Web, Document, and Handwriting datasets, each of which is introduced next.

Scene Dataset

We first collect the publicly available scene datasets including RCTW, ReCTS, LSVT, ArT, CTW resulting in 636,455 samples, which are randomly shuffled and then divided at a ratio of 8:1:1 to construct the training, validation, and testing datasets. Details of each scene datasets are introduced as follows:

  • RCTW [1] provides 12,263 annotated Chinese text images from natural scenes. We derive 44,420 text lines from the training set and use them in our benchmark. The testing set of RCTW is not used as the text labels are not available.
  • ReCTS [2] provides 25,000 annotated street-view Chinese text images, mainly derived from natural signboards. We only adopt the training set and crop 107,657 text samples in total for our benchmark.
  • LSVT [3] is a large scale Chinese and English scene text dataset, providing 50,000 full-labeled (polygon boxes and text labels) and 400,000 partial-labeled (only one text instance each image) samples. We only utilize the full-labeled training set and crop 243,063 text line images for our benchmark.
  • ArT [4] contains text samples captured in natural scenes with various text layouts (e.g., rotated text and curved texts). Here we obtain 49,951 cropped text images from the training set, and use them in our benchmark.
  • CTW [5] contains annotated 30,000 street view images with rich diversity including planar, raised, and poorly-illuminated text images. Also, it provides not only character boxes and labels, but also character attributes like background complexity, appearance, etc. Here we crop 191,364 text lines from both the training and testing sets.

We combine all the subdatasets, resulting in 636,455 text samples. We randomly shuffle these samples and split them at a ratio of 8:1:1, leading to 509,164 samples for training, 63,645 samples for validation, and 63,646 samples for testing.

Web Dataset

To collect the web dataset, we utilize MTWI [6] that contains 20,000 Chinese and English web text images from 17 different categories on the Taobao website. The text samples are appeared in various scenes, typography and designs. We derive 140,589 text images from the training set, and manually divide them at a ratio of 8:1:1, resulting in 112,471 samples for training, 14,059 samples for validation, and 14,059 samples for testing.

Document Dataset

We use the public repository Text Render [7] to generate some document-style synthetic text images. More specifically, we uniformly sample the length of text varying from 1 to 15. The corpus comes from wiki, films, amazon, and baike. The dataset contains 500,000 in total and is randomly divided into training, validation, and testing sets with a proportion of 8:1:1 (400,000 v.s. 50,000 v.s. 50,000).

Handwriting Dataset

We collect the handwriting dataset based on SCUT-HCCDoc [8], which captures the Chinese handwritten image with cameras in unconstrained environments. Following the official settings, we derive 93,254 text lines for training and 23,389 for testing, respectively. To pursue more rigorous research, we manually split the original training set into two sets at a ratio of 4:1, resulting in 74,603 samples for training and 18,651 samples for validation. For convenience, we continue to use the original 23,389 samples for testing.

Overall, the amount of text samples for each dataset is shown as follows:

  Setting     Dataset     Sample Size     Setting     Dataset     Sample Size  
Scene Training 509,164 Web Training 112,471
Validation 63,645 Validation 14,059
Testing 63,646 Testing 14,059
Document Training 400,000 Handwriting Training 74,603
Validation 50,000 Validation 18,651
Testing 50,000 Testing 23,389

Baselines

We manually select seven representative methods as baselines, which will be introduced as follows.

  • CRNN [9] is a typical CTC-based method and it is widely used in academia and industry. It first sends the text image to a CNN to extract the image features, then adopts a two-layer LSTM to encode the sequential features. Finally, the output of LSTM is fed to a CTC (Connectionist Temperal Classification) decoder to maximize the probability of all the paths towards the ground truth.

  • ASTER [10] is a typical rectification-based method aiming at tackling irregular text images. It introduces a Spatial Transformer Network (STN) to rectify the given text image into a more recognizable appearance. Then the rectified text image is sent to a CNN and a two-layer LSTM to extract the features. In particular, ASTER takes advantage of the attention mechanism to predict the final text sequence.

  • MORAN [11] is a representative rectification-based method. It first adopts a multi-object rectification network (MORN) to predict rectified pixel offsets in a weak supervision way (distinct from ASTER that utilizes STN). The output pixel offsets are further used for generating the rectified image, which is further sent to the attention-based decoder (ASRN) for text recognition.

  • SAR [12] is a representative method that takes advantage of 2-D feature maps for more robust decoding. In particular, it is mainly proposed to tackle irregular texts. On one hand, SAR adopts more powerful residual blocks in the CNN encoder for learning stronger image representation. On the other hand, different from CRNN, ASTER, and MORAN compressing the given image into a 1-D feature map, SAR adopts 2-D attention on the spatial dimension of the feature maps for decoding, resulting in a stronger performance in curved and oblique texts.

  • SRN [13] is a representative semantics-based method that utilizes self-attention modules to correct the errors of predictions. It proposes a parallel visual attention module followed by a self-attention network to capture the global semantic features through multi-way parallel transmission, resulting in significant performance improvement towards the recognition of irregular texts.

  • SEED [14] is a representative semantics-based method. It introduces a semantics module to extract global semantics embedding and utilize it to initialize the first hidden state of the decoder. Specifically, while inheriting the structure of ASTER, the decoder of SEED intakes the semantic embedding to provide prior for the recognition process, thus showing superiority in recognizing low-quality text images.

  • TransOCR [15] is one of the representative Transformer-based methods. It is originally designed to provide text priors for the super-resolution task. It employs ResNet-34 as the encoder and self-attention modules as the decoder. Distinct from the RNN-based decoders, the self-attention modules are more efficient to capture semantic features of the given text images.

Here are the results of the baselines on four datasets. ACC / NED follow the percentage format and decimal format, respectively. Please click the hyperlinks to see the detailed experimental results, following the format of (index [pred] [gt]).

  Baseline     Year   Dataset
      Scene              Web          Document    Handwriting 
CRNN [9] 2016 53.4 / 0.734 54.5 / 0.736 97.5 / 0.994 46.4 / 0.840
ASTER [10] 2018 54.5 / 0.695 52.3 / 0.689 93.1 / 0.989 38.9 / 0.720
MORAN [11] 2019 51.8 / 0.686 49.9 / 0.682 95.8 / 0.991 39.7 / 0.761
SAR [12] 2019 62.5 / 0.785 54.3 / 0.725 93.8 / 0.987 31.4 / 0.655
SRN [13] 2020 60.1 / 0.778 52.3 / 0.706 96.7 / 0.995 18.0 / 0.512
SEED [14] 2020 49.6 / 0.661 46.3 / 0.637 93.7 / 0.990 32.1 / 0.674
TransOCR [15] 2021 63.3 / 0.802 62.3 / 0.787 96.9 / 0.994 53.4 / 0.849

References

Datasets

[1] Shi B, Yao C, Liao M, et al. ICDAR2017 competition on reading chinese text in the wild (RCTW-17). ICDAR, 2017.

[2] Zhang R, Zhou Y, Jiang Q, et al. Icdar 2019 robust reading challenge on reading chinese text on signboard. ICDAR, 2019.

[3] Sun Y, Ni Z, Chng C K, et al. ICDAR 2019 competition on large-scale street view text with partial labeling-RRC-LSVT. ICDAR, 2019.

[4] Chng C K, Liu Y, Sun Y, et al. ICDAR2019 robust reading challenge on arbitrary-shaped text-RRC-ArT. ICDAR, 2019.

[5] Yuan T L, Zhu Z, Xu K, et al. A large chinese text dataset in the wild. Journal of Computer Science and Technology, 2019.

[6] He M, Liu Y, Yang Z, et al. ICPR2018 contest on robust reading for multi-type web images. ICPR, 2018.

[7] text_render: https://github.com/Sanster/text_renderer

[8] Zhang H, Liang L, Jin L. SCUT-HCCDoc: A new benchmark dataset of handwritten Chinese text in unconstrained camera-captured documents. Pattern Recognition, 2020.

Methods

[9] Shi B, Bai X, Yao C. An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. TPAMI, 2016.

[10] Shi B, Yang M, Wang X, et al. Aster: An attentional scene text recognizer with flexible rectification. TPAMI, 2018.

[11] Luo C, Jin L, Sun Z. Moran: A multi-object rectified attention network for scene text recognition. PR, 2019.

[12] Li H, Wang P, Shen C, et al. Show, attend and read: A simple and strong baseline for irregular text recognition. AAAI, 2019.

[13] Yu D, Li X, Zhang C, et al. Towards accurate scene text recognition with semantic reasoning networks. CVPR, 2020.

[14] Qiao Z, Zhou Y, Yang D, et al. Seed: Semantics enhanced encoder-decoder framework for scene text recognition. CVPR, 2020.

[15] Chen J, Li B, Xue X. Scene Text Telescope: Text-Focused Scene Image Super-Resolution. CVPR, 2021.

Citation

Please consider citing this paper if you find it useful in your research. The bibtex-format citations of all relevant datasets and baselines are at link.

to be filled

Acknowledgements

We sincerely thank those researchers who collect the subdatasets for Chinese text recognition. Besides, we would like to thank Teng Fu, Nanxing Meng, Ke Niu and Yingjie Geng for their feedbacks on this benchmark.

Copyright

The team includes Jingye Chen, Haiyang Yu, Jianqi Ma, Mengnan Guan, Xixi Xu, Xiaocong Wang, and Shaobo Qu, advised by Prof. Bin Li and Prof. Xiangyang Xue.

Copyright © 2021 Fudan-FudanVI. All Rights Reserved.

Alt text

Owner
FudanVI Lab
Visual Intelligence Lab at Fudan University
FudanVI Lab
A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing.

AnimeGAN A simple PyTorch Implementation of Generative Adversarial Networks, focusing on anime face drawing. Randomly Generated Images The images are

Jie Lei 雷杰 1.2k Jan 03, 2023
Code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic and Aleatoric Uncertainty

Deep Deterministic Uncertainty This repository contains the code for Deterministic Neural Networks with Appropriate Inductive Biases Capture Epistemic

Jishnu Mukhoti 69 Nov 28, 2022
Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

TEQS Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has n

The Eigensolvers 53 May 18, 2022
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
Microsoft Cognitive Toolkit (CNTK), an open source deep-learning toolkit

CNTK Chat Windows build status Linux build status The Microsoft Cognitive Toolkit (https://cntk.ai) is a unified deep learning toolkit that describes

Microsoft 17.3k Dec 29, 2022
This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text"

Iconary This is the code for our paper "Iconary: A Pictionary-Based Game for Testing Multimodal Communication with Drawings and Text". It includes the

AI2 6 May 24, 2022
Zeyuan Chen, Yangchao Wang, Yang Yang and Dong Liu.

Principled S2R Dehazing This repository contains the official implementation for PSD Framework introduced in the following paper: PSD: Principled Synt

zychen 78 Dec 30, 2022
Code for KDD'20 "An Efficient Neighborhood-based Interaction Model for Recommendation on Heterogeneous Graph"

Heterogeneous INteract and aggreGatE (GraphHINGE) This is a pytorch implementation of GraphHINGE model. This is the experiment code in the following w

Jinjiarui 69 Nov 24, 2022
Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
Signals-backend - A suite of card games written in Python

Card game A suite of card games written in the Python language. Features coming

1 Feb 15, 2022
Open source Python implementation of the HDR+ photography pipeline

hdrplus-python Open source Python implementation of the HDR+ photography pipeline, originally developped by Google and presented in a 2016 article. Th

77 Jan 05, 2023
Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing

FGHV Impelmentation for paper Feature Generation and Hypothesis Verification for Reliable Face Anti-Spoofing Requirements Python 3.6 Pytorch 1.5.0 Cud

5 Jun 02, 2022
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
Raindrop strategy for Irregular time series

Graph-Guided Network For Irregularly Sampled Multivariate Time Series Overview This repository contains processed datasets and implementation code for

Zitnik Lab @ Harvard 74 Jan 03, 2023
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Fully convolutional deep neural network to remove transparent overlays from images

Fully convolutional deep neural network to remove transparent overlays from images

Marc Belmont 1.1k Jan 06, 2023
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
End-to-End Object Detection with Fully Convolutional Network

This project provides an implementation for "End-to-End Object Detection with Fully Convolutional Network" on PyTorch.

472 Dec 22, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022