[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

Overview

SofGAN (TOG 2021)

Project page | Paper

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space of portraits into two subspaces: a geometry space and a texture space. Experiments on SofGAN show that our system can generate high quality portrait images with independently controllable geometry and texture attributes.

Teaser

Installation

version version version

Install environment:

git clone https://github.com/apchenstu/sofgan.git --recursive
conda install pytorch==1.7.1 torchvision==0.8.2 cudatoolkit=10.2 -c pytorch
pip install tqdm argparse scikit-image lmdb config-argparse dlib

Training

Please see each subsection for training on different datasets. Available training datasets:

We also provide our pre-process ffhq and celeba segmaps (in our classes labels). You may also want to re-train the SOF model base on your own multi-view segmaps.

Run

CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=9999 train.py \
    --num_worker 4  --resolution 1024
   --name $exp_name
   --iter 10000000
   --batch 1 --mixing 0.9 \
   path/to/your/image/folders \
   --condition_path path/to/your/segmap/folders

In our experiments, 4x Nividia 2080Ti GPU would take around 20 days to reach 10000k iterations. Adjusting the image resolution and max iterations to suit your own dataset. Emperically, for datasets like FFHQ and CelebA(resolution 1024x1024) the network would converge after 1000k iterations and achieve fancy results.

Notice: training on none pair-wise data (image/segmap) is encouraged. Since it's one of the key features of our SofGAN.

Rendering

We provide a rendering script in renderer.ipynb, where you can restyle your own photos, videos and generate free-viewpoint portrait images while maintaining the geometry consistency. Just to download our checkpoints and unzip to the root folder.

UI Illustration

The Painter is included in Painter, you can pull down and drawing on-the-fly. Before that, you need to install the enviroment with pip install -r ./Painter/requirements.txt

UI

IOS App

You could download and try the Wand, an IOS App developed by Deemos.

two-dimensions

Online Demo

New Folder

Relevant Works

StyleFlow: Attribute-conditioned Exploration of StyleGAN-Generated Images using Conditional Continuous Normalizing Flows (TOG 2021)
Rameen Abdal, Peihao Zhu, Niloy Mitra, Peter Wonka

SEAN: Image Synthesis With Semantic Region-Adaptive Normalization (CVPR 2020)
Peihao Zhu, Rameen Abdal, Yipeng Qin, Peter Wonka

StyleRig: Rigging StyleGAN for 3D Control over Portrait Images (CVPR 2020)
A. Tewari, M. Elgharib, G. Bharaj, F. Bernard, H.P. Seidel, P. Pérez, M. Zollhöfer, Ch. Theobalt

StyleGAN2: Analyzing and Improving the Image Quality of {StyleGAN} (CVPR 2020)
Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, Timo Aila

SPADE: Semantic Image Synthesis with Spatially-Adaptive Normalization (CVPR 2019)
Taesung Park, Ming-Yu Liu, Ting-Chun Wang, Jun-Yan Zhu

Citation

If you find our code or paper helps, please consider citing:

@article{sofgan,
author = {Chen, Anpei and Liu, Ruiyang and Xie, Ling and Chen, Zhang and Su, Hao and Yu Jingyi},
title = {SofGAN: A Portrait Image Generator with Dynamic Styling},
year = {2021},
issue_date = {Jul 2021},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
volume = {41},
number = {1},
url = {https://doi.org/10.1145/3470848},
doi = {10.1145/3470848},
journal = {ACM Trans. Graph.},
month = July,
articleno = {1},
numpages = {26},
keywords = {image editing, Generative adversarial networks}
}
Owner
Anpei Chen
Anpei Chen
MohammadReza Sharifi 27 Dec 13, 2022
git《Joint Entity and Relation Extraction with Set Prediction Networks》(2020) GitHub:

Joint Entity and Relation Extraction with Set Prediction Networks Source code for Joint Entity and Relation Extraction with Set Prediction Networks. W

130 Dec 13, 2022
Official implementation of SynthTIGER (Synthetic Text Image GEneratoR) ICDAR 2021

🐯 SynthTIGER: Synthetic Text Image GEneratoR Official implementation of SynthTIGER | Paper | Datasets Moonbin Yim1, Yoonsik Kim1, Han-cheol Cho1, Sun

Clova AI Research 256 Jan 05, 2023
A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen.

Master Release Pytorch - Py + Nim A Nim frontend for pytorch, aiming to be mostly auto-generated and internally using ATen. Because Nim compiles to C+

Giovanni Petrantoni 425 Dec 22, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19

2s-AGCN Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition in CVPR19 Note PyTorch version should be 0.3! For PyTor

LShi 547 Dec 26, 2022
ML models implementation practice

Let's implement various ML algorithms with numpy/tf Vanilla Neural Network https://towardsdatascience.com/lets-code-a-neural-network-in-plain-numpy-ae

Jinsoo Heo 4 Jul 04, 2021
Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio"

Success Predictor Implementation of the algorithm shown in the article "Modelo de Predicción de Éxito de Canciones Basado en Descriptores de Audio". B

Rodrigo Nazar Meier 4 Mar 17, 2022
Free-duolingo-plus - Duolingo account creator that uses your invite code to get you free duolingo plus

free-duolingo-plus duolingo account creator that uses your invite code to get yo

1 Jan 06, 2022
StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation

StyleSpace Analysis: Disentangled Controls for StyleGAN Image Generation Demo video: CVPR 2021 Oral: Single Channel Manipulation: Localized or attribu

Zongze Wu 267 Dec 30, 2022
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
🇰🇷 Text to Image in Korean

KoDALLE Utilizing pretrained language model’s token embedding layer and position embedding layer as DALLE’s text encoder. Background Training DALLE mo

HappyFace 74 Sep 22, 2022
Docker containers of baseline agents for the Crafter environment

Crafter Baselines This repository contains Docker containers for running various baselines on the Crafter environment. Reward Agents DreamerV2 based o

Danijar Hafner 17 Sep 25, 2022
darija <-> english dictionary

darija-dictionary Having advanced IT solutions that are well adapted to the Moroccan context passes inevitably through understanding Moroccan dialect.

DODa 102 Jan 01, 2023
Learning to Self-Train for Semi-Supervised Few-Shot

Learning to Self-Train for Semi-Supervised Few-Shot Classification This repository contains the TensorFlow implementation for NeurIPS 2019 Paper "Lear

86 Dec 29, 2022
This code implements constituency parse tree aggregation

README This code implements constituency parse tree aggregation. Folder details code: This folder contains the code that implements constituency parse

Adithya Kulkarni 0 Oct 11, 2021
Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation

CorDA Code for our paper Domain Adaptive Semantic Segmentation with Self-Supervised Depth Estimation Prerequisite Please create and activate the follo

Qin Wang 60 Nov 30, 2022
A heterogeneous entity-augmented academic language model based on Open Academic Graph (OAG)

Library | Paper | Slack We released two versions of OAG-BERT in CogDL package. OAG-BERT is a heterogeneous entity-augmented academic language model wh

THUDM 58 Dec 17, 2022