This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

Overview

SBEVNet: End-to-End Deep Stereo Layout Estimation

This repository contains the code for "SBEVNet: End-to-End Deep Stereo Layout Estimation" paper by Divam Gupta, Wei Pu, Trenton Tabor, Jeff Schneider

Usage

Dependencies

pip install --upgrade git+https://github.com/divamgupta/pytorch-propane
pip install torch==1.4.0 torchvision==0.5.0
pip install opencv-python
pip install torchgeometry

Dataset and Directories

For the example we use the following directories:

  • Datasets : ./datasets/carla/ and ./datasets/kitti/
  • Weights : ./sbevnet_weights/carla and ./sbevnet_weights/kitti
  • Predictions : ./predictions/kitti ./predictions/carla

Download and unzip the datasets and place them in ./datasets directory

Training

cd <cloned_repo_path>

Training the model on the CARLA dataset:

pytorch_propane sbevnet train    \
 --model_name sbevnet_model --network_name sbevnet --dataset_name  sbevnet_dataset_main --dataset_split train \
 --eval_dataset_name "sbevnet_dataset_main" --eval_dataset_split test \
 --batch_size 3  --eval_batch_size 1 \
 --n_epochs 20   --overwrite_epochs true  \
 --datapath "datasets/carla/dataset.json" \
 --save_path "sbevnet_weights/carla/carla_save_0" \
 --image_w 512 \
 --image_h 288 \
 --max_disp 64 \
 --n_hmap 100 \
 --xmin 1 \
 --xmax 39 \
 --ymin -19 \
 --ymax 19 \
 --cx 256 \
 --cy 144 \
 --f 179.2531 \
 --tx 0.2 \
 --camera_ext_x 0.9 \
 --camera_ext_y -0.1 \
 --fixed_cam_confs true \
 --do_ipm_rgb true \
 --do_ipm_feats true  \
 --do_mask true --check_degenerate true 

Training the model on the KITTI dataset:

pytorch_propane sbevnet train    \
 --model_name sbevnet_model --network_name sbevnet --dataset_name  sbevnet_dataset_main --dataset_split train \
 --eval_dataset_name "sbevnet_dataset_main" --eval_dataset_split test \
 --batch_size 3  --eval_batch_size 1 \
 --n_epochs 40   --overwrite_epochs true  \
 --datapath "datasets/kitti/dataset.json" \
 --save_path "sbevnet_weights/kitti/kitti_save_0" \
 --image_w 640 \
 --image_h 256 \
 --max_disp 64 \
 --n_hmap 128 \
 --xmin 5.72 \
 --xmax 43.73 \
 --ymin -19 \
 --ymax 19 \
 --camera_ext_x 0 \
 --camera_ext_y 0 \
 --fixed_cam_confs false \
 --do_ipm_rgb true \
 --do_ipm_feats true  \
 --do_mask true --check_degenerate true 

Evaluation

Evaluating the model on the CARLA dataset:

pytorch_propane sbevnet eval_iou    \
 --model_name sbevnet_model --network_name sbevnet \
 --eval_dataset_name "sbevnet_dataset_main" --eval_dataset_split test --dataset_type carla \
 --eval_batch_size 1 \
 --datapath "datasets/carla/dataset.json" \
 --load_checkpoint_path "sbevnet_weights/carla/carla_save_0" \
 --image_w 512 \
 --image_h 288 \
 --max_disp 64 \
 --n_hmap 100 \
 --xmin 1 \
 --xmax 39 \
 --ymin -19 \
 --ymax 19 \
 --cx 256 \
 --cy 144 \
 --f 179.2531 \
 --tx 0.2 \
 --camera_ext_x 0.9 \
 --camera_ext_y -0.1 \
 --fixed_cam_confs true \
 --do_ipm_rgb true \
 --do_ipm_feats true  \
 --do_mask true 

Evaluating the model on the KITTI dataset:

pytorch_propane sbevnet eval_iou    \
 --model_name sbevnet_model --network_name sbevnet  \
 --eval_dataset_name "sbevnet_dataset_main" --eval_dataset_split test --dataset_type kitti \
 --eval_batch_size 1 \
 --datapath "datasets/kitti/dataset.json" \
 --load_checkpoint_path "sbevnet_weights/kitti/kitti_save_0" \
 --image_w 640 \
 --image_h 256 \
 --max_disp 64 \
 --n_hmap 128 \
 --xmin 5.72 \
 --xmax 43.73 \
 --ymin -19 \
 --ymax 19 \
 --camera_ext_x 0 \
 --camera_ext_y 0 \
 --fixed_cam_confs false \
 --do_ipm_rgb true \
 --do_ipm_feats true  \
 --do_mask true 

Save Predictions

Save predictions of the model on the CARLA dataset:

pytorch_propane sbevnet save_preds    \
 --model_name sbevnet_model --network_name sbevnet \
 --eval_dataset_name "sbevnet_dataset_main" --eval_dataset_split test --output_dir "predictions/kitti" \
 --eval_batch_size 1 \
 --datapath "datasets/carla/dataset.json" \
 --load_checkpoint_path "sbevnet_weights/carla/carla_save_0" \
 --image_w 512 \
 --image_h 288 \
 --max_disp 64 \
 --n_hmap 100 \
 --xmin 1 \
 --xmax 39 \
 --ymin -19 \
 --ymax 19 \
 --cx 256 \
 --cy 144 \
 --f 179.2531 \
 --tx 0.2 \
 --camera_ext_x 0.9 \
 --camera_ext_y -0.1 \
 --fixed_cam_confs true \
 --do_ipm_rgb true \
 --do_ipm_feats true  \
 --do_mask true 

Save predictions of the model on the KITTI dataset:

pytorch_propane sbevnet save_preds    \
 --model_name sbevnet_model --network_name sbevnet  \
 --eval_dataset_name "sbevnet_dataset_main" --eval_dataset_split test --output_dir "predictions/kitti" \
 --eval_batch_size 1 \
 --datapath "datasets/kitti/dataset.json" \
 --load_checkpoint_path "sbevnet_weights/kitti/kitti_save_0" \
 --image_w 640 \
 --image_h 256 \
 --max_disp 64 \
 --n_hmap 128 \
 --xmin 5.72 \
 --xmax 43.73 \
 --ymin -19 \
 --ymax 19 \
 --camera_ext_x 0 \
 --camera_ext_y 0 \
 --fixed_cam_confs false \
 --do_ipm_rgb true \
 --do_ipm_feats true  \
 --do_mask true 
Owner
Divam Gupta
Graduate student at Carnegie Mellon University | Former Research Fellow at Microsoft Research
Divam Gupta
Open Source Differentiable Computer Vision Library for PyTorch

Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer

kornia 7.6k Jan 04, 2023
SegNet-Basic with Keras

SegNet-Basic: What is Segnet? Deep Convolutional Encoder-Decoder Architecture for Semantic Pixel-wise Image Segmentation Segnet = (Encoder + Decoder)

Yad Konrad 81 Jun 30, 2022
Implementation of UNET architecture for Image Segmentation.

Semantic Segmentation using UNET This is the implementation of UNET on Carvana Image Masking Kaggle Challenge About the Dataset This dataset contains

Anushka agarwal 4 Dec 21, 2021
This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models This repository contains the code for our paper VDA (publ

RUCAIBox 13 Aug 06, 2022
Code for "3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop"

PyMAF This repository contains the code for the following paper: 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment Feedback Loop Hongwe

Hongwen Zhang 450 Dec 28, 2022
Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fusion Framework via Self-Supervised Multi-Task Learning. Code will be available soon.

Official-PyTorch-Implementation-of-TransMEF Official PyTorch implementation of our AAAI22 paper: TransMEF: A Transformer-Based Multi-Exposure Image Fu

117 Dec 27, 2022
Source Code for DialogBERT: Discourse-Aware Response Generation via Learning to Recover and Rank Utterances (https://arxiv.org/pdf/2012.01775.pdf)

DialogBERT This is a PyTorch implementation of the DialogBERT model described in DialogBERT: Neural Response Generation via Hierarchical BERT with Dis

Xiaodong Gu 67 Jan 06, 2023
A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery

A Semantic Segmentation Network for Urban-Scale Building Footprint Extraction Using RGB Satellite Imagery This repository is the official implementati

Aatif Jiwani 42 Dec 08, 2022
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
Copy Paste positive polyp using poisson image blending for medical image segmentation

Copy Paste positive polyp using poisson image blending for medical image segmentation According poisson image blending I've completely used it for bio

Phạm Vũ Hùng 2 Oct 19, 2021
A Python 3 package for state-of-the-art statistical dimension reduction methods

direpack: a Python 3 library for state-of-the-art statistical dimension reduction techniques This package delivers a scikit-learn compatible Python 3

Sven Serneels 32 Dec 14, 2022
Code for 1st place solution in Sleep AI Challenge SNU Hospital

Sleep AI Challenge SNU Hospital 2021 Code for 1st place solution for Sleep AI Challenge (Note that the code is not fully organized) Refer to the notio

Saewon Yang 13 Jan 03, 2022
This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Amortized Assimilation This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems. Abstract: T

4 Aug 16, 2022
Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train format

ttopt Description Gradient-free global optimization algorithm for multidimensional functions based on the low rank tensor train (TT) format and maximu

5 May 23, 2022
Ontologysim: a Owlready2 library for applied production simulation

Ontologysim: a Owlready2 library for applied production simulation Ontologysim is an open-source deep production simulation framework, with an emphasi

10 Nov 30, 2022
Generalized Random Forests

generalized random forests A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods fo

GRF Labs 781 Dec 25, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
領域を指定し、キーを入力することで画像を保存するツールです。クラス分類用のデータセット作成を想定しています。

image-capture-class-annotation 領域を指定し、キーを入力することで画像を保存するツールです。 クラス分類用のデータセット作成を想定しています。 Requirement OpenCV 3.4.2 or later Usage 実行方法は以下です。 起動後はマウスクリック4

KazuhitoTakahashi 5 May 28, 2021
[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Unlearnable Examples Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah

Hanxun Huang 98 Dec 07, 2022