This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Overview

Amortized Assimilation

This repository contains a PyTorch implementation of the paper Learning to Assimilate in Chaotic Dynamical Systems.

Abstract: The accuracy of simulation-based forecasting in chaotic systems is heavily dependent on high-quality estimates of the system state at the time the forecast is initialized. Data assimilation methods are used to infer these initial conditions by systematically combining noisy, incomplete observations and numerical models of system dynamics to produce effective estimation schemes. We introduce amortized assimilation, a framework for learning to assimilate in dynamical systems from sequences of noisy observations with no need for ground truth data. We motivate the framework by extending powerful results from self-supervised denoising to the dynamical systems setting through the use of differentiable simulation.

Installation

Requirements

This code can be memory heavy as each experiment unrolls at least 40 assimilation steps (which from a memory perspective is equivalent to a 40x deeper network plus whatever is needed for the simulation). Current settings are optimized to max out memory usage on a GTX1070 GPU. The easiest ways to tune memory usage are network width and ensemble size. Checkpointing could significantly improve memory utilization but is not currently implemented.

To install the dependencies, use the provided requirements.txt file:

pip install -r requirements.txt 

There is also a dependency on torchdiffeq. Instructions for installing torchdiffeq can be found at https://github.com/rtqichen/torchdiffeq, but are also copied below:

pip install git+https://github.com/rtqichen/torchdiffeq

To run the DA comparison models, you will need to install DAPPER. Instructions can be found here: https://github.com/nansencenter/DAPPER.

Installing this package

A setup.py file has been included for installation. Navigate to the home folder and run:

pip install -e . 

Run experiments

All experiments can be run from experiments/run_*.py. Default settings are those used in the paper. First navigate to the experiments directory then execute:

L96 Full Observations

python run_L96Conv.py --obs_conf full_obs

L96 Partial Observations (every fourth).

python run_L96Conv.py --obs_conf every_4th_dim_partial_obs

VL20 Partial

python run_VLConv.py --obs_conf every_4th_dim_partial_obs

KS Full

python run_KS.py 

Other modifications of interest might be to adjust the step size for the integrator (--step_size, default .1), observation error(--noise, default 1.), ensemble size (--m, default 10), or network width (--hidden_size, default 64 for conv). The L96 code also includes options for self-supervised and supervised analysis losses (ss_analysis, clean_analysis) used for creating Figure 6 from the paper. Custom observation operators can be created in the same style as those found in obs_configs.py.

Parameters for traditional DA approaches were tuned via grid search over smaller sequences. Those hyperparameters were then used for longer assimilation sequences.

To test a new architecture, you'll want to ensure it's obeying the same API as the models in models.py, but otherwise it should slot in without major issues.

Datasets

Code is included for generating the Lorenz 96, VL 20 and KS datasets. This can be found under amortized_assimilation/data_utils.py

References

DAPPER: Raanes, P. N., & others. (2018). nansencenter/DAPPER: Version 0.8. https://doi.org/10.5281/zenodo.2029296

Acknowledgements

This material is based upon work supported by the National Science Foundation under Grant No. 1835825. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.


If you found the code or ideas in this repository useful, please consider citing:

@article{mccabe2021l2assim,
  title={Learning to Assimilate in Chaotic Dynamical Systems},
  author={McCabe, Michael and Brown, Jed},
  journal={Advances in Neural Information Processing Systems},
  year={2021}
}
This program creates a formatted excel file which highlights the undervalued stock according to Graham's number.

Over-and-Undervalued-Stocks Of Nepse Using Graham's Number Scrap the latest data using different websites and creates a formatted excel file that high

6 May 03, 2022
Social Fabric: Tubelet Compositions for Video Relation Detection

Social-Fabric Social Fabric: Tubelet Compositions for Video Relation Detection This repository contains the code and results for the following paper:

Shuo Chen 7 Aug 09, 2022
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022
Python scripts for performing stereo depth estimation using the HITNET Tensorflow model.

HITNET-Stereo-Depth-estimation Python scripts for performing stereo depth estimation using the HITNET Tensorflow model from Google Research. Stereo de

Ibai Gorordo 76 Jan 02, 2023
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
Kaggleship: Kaggle Notebooks

Kaggleship: Kaggle Notebooks This repository contains my Kaggle notebooks. They are generally about data science, machine learning, and deep learning.

Erfan Sobhaei 1 Jan 25, 2022
Real-time ground filtering algorithm of cloud points acquired using Terrestrial Laser Scanner (TLS)

This repository contains tools to simulate the ground filtering process of a registered point cloud. The repository contains two filtering methods. The first method uses a normal vector, and fit to p

5 Aug 25, 2022
Neural Motion Learner With Python

Neural Motion Learner Introduction This work is to extract skeletal structure from volumetric observations and to learn motion dynamics from the detec

Jinseok Bae 14 Nov 28, 2022
Artificial intelligence technology inferring issues and logically supporting facts from raw text

개요 비정형 텍스트를 학습하여 쟁점별 사실과 논리적 근거 추론이 가능한 인공지능 원천기술 Artificial intelligence techno

6 Dec 29, 2021
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
MediaPipeのPythonパッケージのサンプルです。2020/12/11時点でPython実装のある4機能(Hands、Pose、Face Mesh、Holistic)について用意しています。

mediapipe-python-sample MediaPipeのPythonパッケージのサンプルです。 2020/12/11時点でPython実装のある以下4機能について用意しています。 Hands Pose Face Mesh Holistic Requirement mediapipe 0.

KazuhitoTakahashi 217 Dec 12, 2022
Self-describing JSON-RPC services made easy

ReflectRPC Self-describing JSON-RPC services made easy Contents What is ReflectRPC? Installation Features Datatypes Custom Datatypes Returning Errors

Andreas Heck 31 Jul 16, 2022
prior-based-losses-for-medical-image-segmentation

Repository for papers: Benchmark: Effect of Prior-based Losses on Segmentation Performance: A Benchmark Midl: A Surprisingly Effective Perimeter-based

Rosana EL JURDI 9 Sep 07, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
Code and data for "TURL: Table Understanding through Representation Learning"

TURL This Repo contains code and data for "TURL: Table Understanding through Representation Learning". Environment and Setup Data Pretraining Finetuni

SunLab-OSU 63 Nov 23, 2022
Code for the Lovász-Softmax loss (CVPR 2018)

The Lovász-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks Maxim Berman, Amal Ranne

Maxim Berman 1.3k Jan 04, 2023
Geometric Vector Perceptron --- a rotation-equivariant GNN for learning from biomolecular structure

Geometric Vector Perceptron Code to accompany Learning from Protein Structure with Geometric Vector Perceptrons by B Jing, S Eismann, P Suriana, RJL T

Dror Lab 85 Dec 29, 2022
GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors

GPU implementation of kNN and SNN GPU implementation of $k$-Nearest Neighbors and Shared-Nearest Neighbors Supported by numba cuda and faiss library E

Hyeon Jeon 7 Nov 23, 2022
A tensorflow implementation of an HMM layer

tensorflow_hmm Tensorflow and numpy implementations of the HMM viterbi and forward/backward algorithms. See Keras example for an example of how to use

Zach Dwiel 283 Oct 19, 2022
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022