This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Related tags

Deep LearningVDA
Overview

Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models

This repository contains the code for our paper VDA (public in EMNLP2021 main conference)

Quick Links

Overview

We propose a general framework Virtual Data Augmentation (VDA) for robustly fine-tuning Pre-trained Language Models for downstream tasks. Our VDA utilizes a masked language model with Gaussian noise to augment virtual examples for improving the robustness, and also adopts regularized training to further guarantee the semantic relevance and diversity.

Train VDA

In the following section, we describe how to train a model with VDA by using our code.

Training

Data

For evaluation of our VDA, we use 6 text classification datasets, i.e. Yelp, IMDB, AGNews, MR, QNLI and MRPC datasets. These datasets can be downloaded from the GoogleDisk

After download the two ziped files, users should unzip the data fold that contains the training, validation and test data of the 6 datasets. While the Robust fold contains the examples for test the robustness.

Training scripts We public our VDA with 4 base models. For single sentence classification tasks, we use text_classifier_xxx.py files. While for sentence pair classification tasks, we use text_pair_classifier_xxx.py:

  • text_classifier.py and text_pair_classifier.py: BERT-base+VDA

  • text_classifier_freelb.py and text_pair_classifier_freelb.py: FreeLB+VDA on BERT-base

  • text_classifier_smart.py and text_pair_classifier_smart.py: SMART+VDA on BERT-base, where we only use the smooth-inducing adversarial regularization.

  • text_classifier_smix.py and text_pair_classifier_smix.py: Smix+VDA on BERT-base, where we remove the adversarial data augmentation for fair comparison

We provide example scripts for both training and test of our VDA on the 6 datasets. In run_train.sh, we provide 6 example for training on the yelp and qnli datasets. This script calls text_classifier_xxx.py for training (xxx refers to the base model). We explain the arguments in following:

  • --dataset: Training file path.
  • --mlm_path: Pre-trained checkpoints to start with. For now we support BERT-based models (bert-base-uncased, bert-large-uncased, etc.)
  • --save_path: Saved fine-tuned checkpoints file.
  • --max_length: Max sequence length. (For Yelp/IMDB/AG, we use 512. While for MR/QNLI/MRPC, we use 256.)
  • --max_epoch: The maximum training epoch number. (In most of datasets and models, we use 10.)
  • --batch_size: The batch size. (We adapt the batch size to the maximum number w.r.t the GPU memory size. Note that too small number may cause model collapse.)
  • --num_label: The number of labels. (For AG, we use 4. While for other, we use 2.)
  • --lr: Learning rate.
  • --num_warmup: The rate of warm-up steps.
  • --variance: The variance of the Gaussian noise.

For results in the paper, we use Nvidia Tesla V100 32G and Nvidia 3090 24G GPUs to train our models. Using different types of devices or different versions of CUDA/other softwares may lead to slightly different performance.

Evaluation

During training, our model file will show the original accuracy on the test set of the 6 datasets, which evaluates the accuracy performance of our model. Our evaluation code for robustness is based on a modified version of BERT-Attack. It outputs Attack Accuracy, Query Numbers and Perturbation Ratio metrics.

Before evaluation, please download the evaluation datasets for Robustness from the GoogleDisk. Then, following the commonly-used settings, users need to download and process consine similarity matrix following TextFooler.

Based on the checkpoint of the fine-tuned models, we use therun_test.sh script for test the robustness on yelp and qnli datasets. It is based on bert_robust.py file. We explain the arguments in following:

  • --data_path: Training file path.
  • --mlm_path: Pre-trained checkpoints to start with. For now we support BERT-based models (bert-base-uncased, bert-large-uncased, etc.)
  • --tgt_path: The fine-tuned checkpoints file.
  • --num_label: The number of labels. (For AG, we use 4. While for other, we use 2.)

which is expected to output the results as:

original accuracy is 0.960000, attack accuracy is 0.533333, query num is 687.680556, perturb rate is 0.177204

Citation

Please cite our paper if you use VDA in your work:

@inproceedings{zhou2021vda,
  author    = {Kun Zhou, Wayne Xin Zhao, Sirui Wang, Fuzheng Zhang, Wei Wu and Ji-Rong Wen},
  title     = {Virtual Data Augmentation: A Robust and General Framework for Fine-tuning Pre-trained Models},
  booktitle = {{EMNLP} 2021},
  publisher = {The Association for Computational Linguistics},
}
Owner
RUCAIBox
An enthusiastic group that aims to create beautiful things with AI
RUCAIBox
[ICCV'2021] "SSH: A Self-Supervised Framework for Image Harmonization", Yifan Jiang, He Zhang, Jianming Zhang, Yilin Wang, Zhe Lin, Kalyan Sunkavalli, Simon Chen, Sohrab Amirghodsi, Sarah Kong, Zhangyang Wang

SSH: A Self-Supervised Framework for Image Harmonization (ICCV 2021) code for SSH Representative Examples Main Pipeline RealHM DataSet Google Drive Pr

VITA 86 Dec 02, 2022
Segmentation vgg16 fcn - cityscapes

VGGSegmentation Segmentation vgg16 fcn - cityscapes Priprema skupa skripta prepare_dataset_downsampled.py Iz slika cityscapesa izrezuje haubu automobi

6 Oct 24, 2020
A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries.

Yolo-Powered-Detector A object detecting neural network powered by the yolo architecture and leveraging the PyTorch framework and associated libraries

Luke Wilson 1 Dec 03, 2021
Code for the ICCV 2021 paper "Pixel Difference Networks for Efficient Edge Detection" (Oral).

Microsoft365_devicePhish Abusing Microsoft 365 OAuth Authorization Flow for Phishing Attack This is a simple proof-of-concept script that allows an at

Alex 236 Dec 21, 2022
Unsupervised Image Generation with Infinite Generative Adversarial Networks

Unsupervised Image Generation with Infinite Generative Adversarial Networks Here is the implementation of MICGANs using DCGAN architecture on MNIST da

16 Dec 24, 2021
SBINN: Systems-biology informed neural network

SBINN: Systems-biology informed neural network The source code for the paper M. Daneker, Z. Zhang, G. E. Karniadakis, & L. Lu. Systems biology: Identi

Lu Group 15 Nov 19, 2022
[peer review] An Arbitrary Scale Super-Resolution Approach for 3D MR Images using Implicit Neural Representation

ArSSR This repository is the pytorch implementation of our manuscript "An Arbitrary Scale Super-Resolution Approach for 3-Dimensional Magnetic Resonan

Qing Wu 19 Dec 12, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Facebook Research 9k Jan 04, 2023
ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation

ADSPM: Attribute-Driven Spontaneous Motion in Unpaired Image Translation This repository provides a PyTorch implementation of ADSPM. Requirements Pyth

24 Jul 24, 2022
Official implementation for the paper "Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection"

Attentive Prototypes for Source-free Unsupervised Domain Adaptive 3D Object Detection PyTorch code release of the paper "Attentive Prototypes for Sour

Deepti Hegde 23 Oct 17, 2022
A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks

A framework that constructs deep neural networks, autoencoders, logistic regressors, and linear networks without the use of any outside machine learning libraries - all from scratch.

Kordel K. France 2 Nov 14, 2022
Code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizability of Cross-Task Neural Architecture Search.

TransNAS-Bench-101 This repository contains the publishable code for CVPR 2021 paper TransNAS-Bench-101: Improving Transferrability and Generalizabili

Yawen Duan 17 Nov 20, 2022
OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021)

OpenMatch: Open-set Consistency Regularization for Semi-supervised Learning with Outliers (NeurIPS 2021) This is an PyTorch implementation of OpenMatc

Vision and Learning Group 38 Dec 26, 2022
(AAAI2020)Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing

Grapy-ML: Graph Pyramid Mutual Learning for Cross-dataset Human Parsing This repository contains pytorch source code for AAAI2020 oral paper: Grapy-ML

54 Aug 04, 2022
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

ManimML ManimML is a project focused on providing animations and visualizations of common machine learning concepts with the Manim Community Library.

259 Jan 04, 2023
Official repository for "Action-Based Conversations Dataset: A Corpus for Building More In-Depth Task-Oriented Dialogue Systems"

Action-Based Conversations Dataset (ABCD) This respository contains the code and data for ABCD (Chen et al., 2021) Introduction Whereas existing goal-

ASAPP Research 49 Oct 09, 2022
simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

simple_pytorch_example project is a toy example of a python script that instantiates and trains a PyTorch neural network on the FashionMNIST dataset

Ramón Casero 1 Jan 07, 2022
Code for our NeurIPS 2021 paper Mining the Benefits of Two-stage and One-stage HOI Detection

CDN Code for our NeurIPS 2021 paper "Mining the Benefits of Two-stage and One-stage HOI Detection". Contributed by Aixi Zhang*, Yue Liao*, Si Liu, Mia

71 Dec 14, 2022