GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Models

Overview

GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model

This repository is the official PyTorch implementation of GraphRNN, a graph generative model using auto-regressive model.

Jiaxuan You*, Rex Ying*, Xiang Ren, William L. Hamilton, Jure Leskovec, GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Model (ICML 2018)

Installation

Install PyTorch following the instuctions on the official website. The code has been tested over PyTorch 0.2.0 and 0.4.0 versions.

conda install pytorch torchvision cuda90 -c pytorch

Then install the other dependencies.

pip install -r requirements.txt

Test run

python main.py

Code description

For the GraphRNN model: main.py is the main executable file, and specific arguments are set in args.py. train.py includes training iterations and calls model.py and data.py create_graphs.py is where we prepare target graph datasets.

For baseline models:

  • B-A and E-R models are implemented in baselines/baseline_simple.py.
  • Kronecker graph model is implemented in the SNAP software, which can be found in https://github.com/snap-stanford/snap/tree/master/examples/krongen (for generating Kronecker graphs), and https://github.com/snap-stanford/snap/tree/master/examples/kronfit (for learning parameters for the model).
  • MMSB is implemented using the EDWARD library (http://edwardlib.org/), and is located in baselines.
  • We implemented the DeepGMG model based on the instructions of their paper in main_DeepGMG.py.
  • We implemented the GraphVAE model based on the instructions of their paper in baselines/graphvae.

Parameter setting: To adjust the hyper-parameter and input arguments to the model, modify the fields of args.py accordingly. For example, args.cuda controls which GPU is used to train the model, and args.graph_type specifies which dataset is used to train the generative model. See the documentation in args.py for more detailed descriptions of all fields.

Outputs

There are several different types of outputs, each saved into a different directory under a path prefix. The path prefix is set at args.dir_input. Suppose that this field is set to ./:

  • ./graphs contains the pickle files of training, test and generated graphs. Each contains a list of networkx object.
  • ./eval_results contains the evaluation of MMD scores in txt format.
  • ./model_save stores the model checkpoints
  • ./nll saves the log-likelihood for generated graphs as sequences.
  • ./figures is used to save visualizations (see Visualization of graphs section).

Evaluation

The evaluation is done in evaluate.py, where user can choose which settings to evaluate. To evaluate how close the generated graphs are to the ground truth set, we use MMD (maximum mean discrepancy) to calculate the divergence between two sets of distributions related to the ground truth and generated graphs. Three types of distributions are chosen: degree distribution, clustering coefficient distribution. Both of which are implemented in eval/stats.py, using multiprocessing python module. One can easily extend the evaluation to compute MMD for other distribution of graphs.

We also compute the orbit counts for each graph, represented as a high-dimensional data point. We then compute the MMD between the two sets of sampled points using ORCA (see http://www.biolab.si/supp/orca/orca.html) at eval/orca. One first needs to compile ORCA by

g++ -O2 -std=c++11 -o orca orca.cpp` 

in directory eval/orca. (the binary file already in repo works in Ubuntu).

To evaluate, run

python evaluate.py

Arguments specific to evaluation is specified in class evaluate.Args_evaluate. Note that the field Args_evaluate.dataset_name_all must only contain datasets that are already trained, by setting args.graph_type to each of the datasets and running python main.py.

Visualization of graphs

The training, testing and generated graphs are saved at 'graphs/'. One can visualize the generated graph using the function utils.load_graph_list, which loads the list of graphs from the pickle file, and util.draw_graph_list, which plots the graph using networkx.

Misc

Jesse Bettencourt and Harris Chan have made a great slide introducing GraphRNN in Prof. David Duvenaud’s seminar course Learning Discrete Latent Structure.

Owner
Jiaxuan
Jiaxuan
(CVPR2021) DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation

DANNet: A One-Stage Domain Adaptation Network for Unsupervised Nighttime Semantic Segmentation CVPR2021(oral) [arxiv] Requirements python3.7 pytorch==

W-zx-Y 85 Dec 07, 2022
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
Alfred-Restore-Iterm-Arrangement - An Alfred workflow to restore iTerm2 window Arrangements

Alfred-Restore-Iterm-Arrangement This alfred workflow will list avaliable iTerm2

7 May 10, 2022
[v1 (ISBI'21) + v2] MedMNIST: A Large-Scale Lightweight Benchmark for 2D and 3D Biomedical Image Classification

MedMNIST Project (Website) | Dataset (Zenodo) | Paper (arXiv) | MedMNIST v1 (ISBI'21) Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bili

683 Dec 28, 2022
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks

flownet2-pytorch Pytorch implementation of FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks. Multiple GPU training is supported, a

NVIDIA Corporation 2.8k Dec 27, 2022
Resources for the "Evaluating the Factual Consistency of Abstractive Text Summarization" paper

Evaluating the Factual Consistency of Abstractive Text Summarization Authors: Wojciech Kryściński, Bryan McCann, Caiming Xiong, and Richard Socher Int

Salesforce 165 Dec 21, 2022
Telegram chatbot created with deep learning model (LSTM) and telebot library.

Telegram chatbot Telegram chatbot created with deep learning model (LSTM) and telebot library. Description This program will allow you to create very

1 Jan 04, 2022
K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce (EMNLP Founding 2021)

Introduction K-PLUG: Knowledge-injected Pre-trained Language Model for Natural Language Understanding and Generation in E-Commerce. Installation PyTor

Xu Song 21 Nov 16, 2022
Gans-in-action - Companion repository to GANs in Action: Deep learning with Generative Adversarial Networks

GANs in Action by Jakub Langr and Vladimir Bok List of available code: Chapter 2: Colab, Notebook Chapter 3: Notebook Chapter 4: Notebook Chapter 6: C

GANs in Action 914 Dec 21, 2022
Neural Message Passing for Computer Vision

Neural Message Passing for Quantum Chemistry Implementation of different models of Neural Networks on graphs as explained in the article proposed by G

Pau Riba 310 Nov 07, 2022
Improving the robustness and performance of biomedical NLP models through adversarial training

RobustBioNLP Improving the robustness and performance of biomedical NLP models through adversarial training In this repository you can find suppliment

Milad Moradi 3 Sep 20, 2022
Vpw analyzer - A visual J1850 VPW analyzer written in Python

VPW Analyzer A visual J1850 VPW analyzer written in Python Requires Tkinter, Pan

7 May 01, 2022
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022
Learning based AI for playing multi-round Koi-Koi hanafuda card games. Have fun.

Koi-Koi AI Learning based AI for playing multi-round Koi-Koi hanafuda card games. Platform Python PyTorch PySimpleGUI (for the interface playing vs AI

Sanghai Guan 10 Nov 20, 2022
Official implementation of NeurIPS'2021 paper TransformerFusion

TransformerFusion: Monocular RGB Scene Reconstruction using Transformers Project Page | Paper | Video TransformerFusion: Monocular RGB Scene Reconstru

Aljaz Bozic 118 Dec 25, 2022
Keras Image Embeddings using Contrastive Loss

Keras-Image-Embeddings-using-Contrastive-Loss Image to Embedding projection in vector space. Implementation in keras and tensorflow for custom data. B

Shravan Anand K 5 Mar 21, 2022
An executor that loads ONNX models and embeds documents using the ONNX runtime.

ONNXEncoder An executor that loads ONNX models and embeds documents using the ONNX runtime. Usage via Docker image (recommended) from jina import Flow

Jina AI 2 Mar 15, 2022
Training DALL-E with volunteers from all over the Internet using hivemind and dalle-pytorch (NeurIPS 2021 demo)

Training DALL-E with volunteers from all over the Internet This repository is a part of the NeurIPS 2021 demonstration "Training Transformers Together

<a href=[email protected]"> 19 Dec 13, 2022
OpenMMLab Computer Vision Foundation

English | 简体中文 Introduction MMCV is a foundational library for computer vision research and supports many research projects as below: MMCV: OpenMMLab

OpenMMLab 4.6k Jan 09, 2023