Open source code for the paper of Neural Sparse Voxel Fields.

Related tags

Deep LearningNSVF
Overview

Neural Sparse Voxel Fields (NSVF)

Project Page | Video | Paper | Data

Photo-realistic free-viewpoint rendering of real-world scenes using classical computer graphics techniques is a challenging problem because it requires the difficult step of capturing detailed appearance and geometry models. Neural rendering is an emerging field that employs deep neural networks to implicitly learn scene representations encapsulating both geometry and appearance from 2D observations with or without a coarse geometry. However, existing approaches in this field often show blurry renderings or suffer from slow rendering process. We propose Neural Sparse Voxel Fields (NSVF), a new neural scene representation for fast and high-quality free-viewpoint rendering.

Here is the official repo for the paper:

We also provide our unofficial implementation for:

Table of contents



Requirements and Installation

This code is implemented in PyTorch using fairseq framework.

The code has been tested on the following system:

  • Python 3.7
  • PyTorch 1.4.0
  • Nvidia apex library (optional)
  • Nvidia GPU (Tesla V100 32GB) CUDA 10.1

Only learning and rendering on GPUs are supported.

To install, first clone this repo and install all dependencies:

pip install -r requirements.txt

Then, run

pip install --editable ./

Or if you want to install the code locally, run:

python setup.py build_ext --inplace

Dataset

You can download the pre-processed synthetic and real datasets used in our paper. Please also cite the original papers if you use any of them in your work.

Dataset Download Link Notes on Dataset Split
Synthetic-NSVF download (.zip) 0_* (training) 1_* (validation) 2_* (testing)
Synthetic-NeRF download (.zip) 0_* (training) 1_* (validation) 2_* (testing)
BlendedMVS download (.zip) 0_* (training) 1_* (testing)
Tanks&Temples download (.zip) 0_* (training) 1_* (testing)

Prepare your own dataset

To prepare a new dataset of a single scene for training and testing, please follow the data structure:

<dataset_name>
|-- bbox.txt         # bounding-box file
|-- intrinsics.txt   # 4x4 camera intrinsics
|-- rgb
    |-- 0.png        # target image for each view
    |-- 1.png
    ...
|-- pose
    |-- 0.txt        # camera pose for each view (4x4 matrices)
    |-- 1.txt
    ...
[optional]
|-- test_traj.txt    # camera pose for free-view rendering demonstration (4N x 4)

where the bbox.txt file contains a line describing the initial bounding box and voxel size:

x_min y_min z_min x_max y_max z_max initial_voxel_size

Note that the file names of target images and those of the corresponding camera pose files are not required to be exactly the same. However, the orders of these two kinds of files (sorted by string) must match. The datasets are split with view indices. For example, "train (0..100), valid (100..200) and test (200..400)" mean the first 100 views for training, 100-199th views for validation, and 200-399th views for testing.

Train a new model

Given the dataset of a single scene ({DATASET}), we use the following command for training an NSVF model to synthesize novel views at 800x800 pixels, with a batch size of 4 images per GPU and 2048 rays per image. By default, the code will automatically detect all available GPUs.

In the following example, we use a pre-defined architecture nsvf_base with specific arguments:

  • By setting --no-sampling-at-reader, the model only samples pixels in the projected image region of sparse voxels for training.
  • By default, we set the ray-marching step size to be the ratio 1/8 (0.125) of the voxel size which is typically described in the bbox.txt file.
  • It is optional to turn on --use-octree. It will build a sparse voxel octree to speed-up the ray-voxel intersection especially when the number of voxels is larger than 10000.
  • By setting --pruning-every-steps as 2500, the model performs self-pruning at every 2500 steps.
  • By setting --half-voxel-size-at and --reduce-step-size-at as 5000,25000,75000, the voxel size and step size are halved at 5k, 25k and 75k, respectively.

Note that, although above parameter settings are used for most of the experiments in the paper, it is possible to tune these parameters to achieve better quality. Besides the above parameters, other parameters can also use default settings.

Besides the architecture nsvf_base, you may check other architectures or define your own architectures in the file fairnr/models/nsvf.py.

python -u train.py ${DATASET} \
    --user-dir fairnr \
    --task single_object_rendering \
    --train-views "0..100" --view-resolution "800x800" \
    --max-sentences 1 --view-per-batch 4 --pixel-per-view 2048 \
    --no-preload \
    --sampling-on-mask 1.0 --no-sampling-at-reader \
    --valid-views "100..200" --valid-view-resolution "400x400" \
    --valid-view-per-batch 1 \
    --transparent-background "1.0,1.0,1.0" --background-stop-gradient \
    --arch nsvf_base \
    --initial-boundingbox ${DATASET}/bbox.txt \
    --use-octree \
    --raymarching-stepsize-ratio 0.125 \
    --discrete-regularization \
    --color-weight 128.0 --alpha-weight 1.0 \
    --optimizer "adam" --adam-betas "(0.9, 0.999)" \
    --lr 0.001 --lr-scheduler "polynomial_decay" --total-num-update 150000 \
    --criterion "srn_loss" --clip-norm 0.0 \
    --num-workers 0 \
    --seed 2 \
    --save-interval-updates 500 --max-update 150000 \
    --virtual-epoch-steps 5000 --save-interval 1 \
    --half-voxel-size-at  "5000,25000,75000" \
    --reduce-step-size-at "5000,25000,75000" \
    --pruning-every-steps 2500 \
    --keep-interval-updates 5 --keep-last-epochs 5 \
    --log-format simple --log-interval 1 \
    --save-dir ${SAVE} \
    --tensorboard-logdir ${SAVE}/tensorboard \
    | tee -a $SAVE/train.log

The checkpoints are saved in {SAVE}. You can launch tensorboard to check training progress:

tensorboard --logdir=${SAVE}/tensorboard --port=10000

There are more examples of training scripts to reproduce the results of our paper under examples.

Evaluation

Once the model is trained, the following command is used to evaluate rendering quality on the test views given the {MODEL_PATH}.

python validate.py ${DATASET} \
    --user-dir fairnr \
    --valid-views "200..400" \
    --valid-view-resolution "800x800" \
    --no-preload \
    --task single_object_rendering \
    --max-sentences 1 \
    --valid-view-per-batch 1 \
    --path ${MODEL_PATH} \
    --model-overrides '{"chunk_size":512,"raymarching_tolerance":0.01,"tensorboard_logdir":"","eval_lpips":True}' \

Note that we override the raymarching_tolerance to 0.01 to enable early termination for rendering speed-up.

Free Viewpoint Rendering

Free-viewpoint rendering can be achieved once a model is trained and a rendering trajectory is specified. For example, the following command is for rendering with a circle trajectory (angular speed 3 degree/frame, 15 frames per GPU). This outputs per-view rendered images and merge the images into a .mp4 video in ${SAVE}/output as follows:

By default, the code can detect all available GPUs.

python render.py ${DATASET} \
    --user-dir fairnr \
    --task single_object_rendering \
    --path ${MODEL_PATH} \
    --model-overrides '{"chunk_size":512,"raymarching_tolerance":0.01}' \
    --render-beam 1 --render-angular-speed 3 --render-num-frames 15 \
    --render-save-fps 24 \
    --render-resolution "800x800" \
    --render-path-style "circle" \
    --render-path-args "{'radius': 3, 'h': 2, 'axis': 'z', 't0': -2, 'r':-1}" \
    --render-output ${SAVE}/output \
    --render-output-types "color" "depth" "voxel" "normal" --render-combine-output \
    --log-format "simple"

Our code also supports rendering for given camera poses. For instance, the following command is for rendering with the camera poses defined in the 200-399th files under folder ${DATASET}/pose:

python render.py ${DATASET} \
    --user-dir fairnr \
    --task single_object_rendering \
    --path ${MODEL_PATH} \
    --model-overrides '{"chunk_size":512,"raymarching_tolerance":0.01}' \
    --render-save-fps 24 \
    --render-resolution "800x800" \
    --render-camera-poses ${DATASET}/pose \
    --render-views "200..400" \
    --render-output ${SAVE}/output \
    --render-output-types "color" "depth" "voxel" "normal" --render-combine-output \
    --log-format "simple"

The code also supports rendering with camera poses defined in a .txt file. Please refer to this example.

Extract the Geometry

We also support running marching cubes to extract the iso-surfaces as triangle meshes from a trained NSVF model and saved as {SAVE}/{NAME}.ply.

python extract.py \
    --user-dir fairnr \
    --path ${MODEL_PATH} \
    --output ${SAVE} \
    --name ${NAME} \
    --format 'mc_mesh' \
    --mc-threshold 0.5 \
    --mc-num-samples-per-halfvoxel 5

It is also possible to export the learned sparse voxels by setting --format 'voxel_mesh'. The output .ply file can be opened with any 3D viewers such as MeshLab.

License

NSVF is MIT-licensed. The license applies to the pre-trained models as well.

Citation

Please cite as

@article{liu2020neural,
  title={Neural Sparse Voxel Fields},
  author={Liu, Lingjie and Gu, Jiatao and Lin, Kyaw Zaw and Chua, Tat-Seng and Theobalt, Christian},
  journal={NeurIPS},
  year={2020}
}
Owner
Meta Research
Meta Research
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
Code repo for EMNLP21 paper "Zero-Shot Information Extraction as a Unified Text-to-Triple Translation"

Zero-Shot Information Extraction as a Unified Text-to-Triple Translation Source code repo for paper Zero-Shot Information Extraction as a Unified Text

cgraywang 88 Dec 31, 2022
An educational tool to introduce AI planning concepts using mobile manipulator robots.

JEDAI Explains Decision-Making AI Virtual Machine Image The recommended way of using JEDAI is to use pre-configured Virtual Machine image that is avai

Autonomous Agents and Intelligent Robots 13 Nov 15, 2022
Alphabetical Letter Recognition

DecisionTrees-Image-Classification Alphabetical Letter Recognition In these demo we are using "Decision Trees" Our database is composed by Learning Im

Mohammed Firass 4 Nov 30, 2021
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
Training PSPNet in Tensorflow. Reproduce the performance from the paper.

Training Reproduce of PSPNet. (Updated 2021/04/09. Authors of PSPNet have provided a Pytorch implementation for PSPNet and their new work with support

Li Xuhong 126 Jul 13, 2022
Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021)

Revisiting Discriminator in GAN Compression: A Generator-discriminator Cooperative Compression Scheme (NeurIPS2021) Overview Prerequisites Linux Pytho

Shaojie Li 34 Mar 31, 2022
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022
Code and hyperparameters for the paper "Generative Adversarial Networks"

Generative Adversarial Networks This repository contains the code and hyperparameters for the paper: "Generative Adversarial Networks." Ian J. Goodfel

Ian Goodfellow 3.5k Jan 08, 2023
Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Fbone (Flask bone) is a Flask (Python microframework) starter/template/bootstrap/boilerplate application.

Wilson 1.7k Dec 30, 2022
Deep Learning Interviews book: Hundreds of fully solved job interview questions from a wide range of key topics in AI.

This book was written for you: an aspiring data scientist with a quantitative background, facing down the gauntlet of the interview process in an increasingly competitive field. For most of you, the

4.1k Dec 28, 2022
Resilience from Diversity: Population-based approach to harden models against adversarial attacks

Resilience from Diversity: Population-based approach to harden models against adversarial attacks Requirements To install requirements: pip install -r

0 Nov 23, 2021
Easy-to-use micro-wrappers for Gym and PettingZoo based RL Environments

SuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers'). We supp

Farama Foundation 357 Jan 06, 2023
PyTorch implementation of a Real-ESRGAN model trained on custom dataset

Real-ESRGAN PyTorch implementation of a Real-ESRGAN model trained on custom dataset. This model shows better results on faces compared to the original

Sber AI 160 Jan 04, 2023
A PyTorch implementation: "LASAFT-Net-v2: Listen, Attend and Separate by Attentively aggregating Frequency Transformation"

LASAFT-Net-v2 Listen, Attend and Separate by Attentively aggregating Frequency Transformation Woosung Choi, Yeong-Seok Jeong, Jinsung Kim, Jaehwa Chun

Woosung Choi 29 Jun 04, 2022
Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion

CSF Code of Classification Saliency-Based Rule for Visible and Infrared Image Fusion Tips: For testing: CUDA_VISIBLE_DEVICES=0 python main.py For trai

Han Xu 14 Oct 31, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
A universal framework for learning timestamp-level representations of time series

TS2Vec This repository contains the official implementation for the paper Learning Timestamp-Level Representations for Time Series with Hierarchical C

Zhihan Yue 284 Dec 30, 2022
Official code repository for the EMNLP 2021 paper

Integrating Visuospatial, Linguistic and Commonsense Structure into Story Visualization PyTorch code for the EMNLP 2021 paper "Integrating Visuospatia

Adyasha Maharana 23 Dec 19, 2022