Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

Related tags

Deep Learningmetasdf
Overview

MetaSDF: Meta-learning Signed Distance Functions

Project Page | Paper | Data

Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely
Gordon Wetzstein
*denotes equal contribution

This is the official implementation of the paper "MetaSDF: Meta-Learning Signed Distance Functions".

In this paper, we show how we may effectively learn a prior over implicit neural representations using gradient-based meta-learning.

While in the paper, we show this for the special case of SDFs with the ReLU nonlinearity, this works formidably well with other types of neural implicit representations - such as our work "SIREN"!

We show you how in our Colab notebook:

Explore MetaSDF in Colab

DeepSDF

A large part of this codebase (directory "3D") is based on the code from the terrific paper "DeepSDF" - check them out!

Get started

If you only want to experiment with MetaSDF, we have written a colab that doesn't require installing anything, and goes through a few other interesting properties of MetaSDF as well - for instance, it turns out you can train SIREN to fit any image in only just three gradient descent steps!

If you want to reproduce all the experiments from the paper, you can then set up a conda environment with all dependencies like so:

conda env create -f environment.yml
conda activate metasdf

3D Experiments

Dataset Preprocessing

Before training a model, you'll first need to preprocess the training meshes. Please follow the preprocessing steps used by DeepSDF if using ShapeNet.

Define an Experiment

Next, you'll need to define the model and hyperparameters for your experiment. Examples are given in 3D/curriculums.py, but feel free to make modifications. Although not present in the original paper, we've included some curriculums with positional encodings and smaller models. These generally perform on par with the original models but require much less memory.

Train a Model

After you've preprocessed your data and have defined your curriculum, you're ready to start training! Navigate to the 3D/scripts directory and run

python run_train.py <curriculum name>.

If training is interupted, pass the flag --load flag to continue training from where you left off.

You should begin seeing printouts of loss, with a summary at every epoch. Checkpoints and Tensorboard summaries are saved to the 'output_dir' directory, as defined in your curriculum. We log raw loss, which is either the composite loss or L1 loss, depending on your experiment definition, as well as a 'Misclassified Percentage'. The 'Misclassified Percentage' is the percentage of samples that the model incorrectly classified as inside or outside the mesh.

Reconstructing Meshes

After training a model, recontruct some meshes using

python run_reconstruct.py <curriculum name> --checkpoint <checkpoint file name>.

The script will use the 'test_split' as defined in the curriculum.

Evaluating Reconstructions

After reconstructing meshes, calculate Chamfer Distances between reconstructions and ground-truth meshes by running

python run_eval.py <reconstruction dir>.

Torchmeta

We're using the excellent torchmeta to implement hypernetworks.

Citation

If you find our work useful in your research, please cite:

       @inproceedings{sitzmann2019metasdf,
            author = {Sitzmann, Vincent
                      and Chan, Eric R.
                      and Tucker, Richard
                      and Snavely, Noah
                      and Wetzstein, Gordon},
            title = {MetaSDF: Meta-Learning Signed
                     Distance Functions},
            booktitle = {Proc. NeurIPS},
            year={2020}
       }

Contact

If you have any questions, please feel free to email the authors.

Owner
Vincent Sitzmann
I'm researching 3D-structured neural scene representations. Ph.D. student in Stanford's Computational Imaging Group.
Vincent Sitzmann
Equivariant Imaging: Learning Beyond the Range Space

Equivariant Imaging: Learning Beyond the Range Space Equivariant Imaging: Learning Beyond the Range Space Dongdong Chen, Julián Tachella, Mike E. Davi

Dongdong Chen 46 Jan 01, 2023
Hyper-parameter optimization for sklearn

hyperopt-sklearn Hyperopt-sklearn is Hyperopt-based model selection among machine learning algorithms in scikit-learn. See how to use hyperopt-sklearn

1.4k Jan 01, 2023
BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

BasicVSR++: Improving Video Super-Resolution with Enhanced Propagation and Alignment

Holy Wu 35 Jan 01, 2023
This code reproduces the results of the paper, "Measuring Data Leakage in Machine-Learning Models with Fisher Information"

Fisher Information Loss This repository contains code that can be used to reproduce the experimental results presented in the paper: Awni Hannun, Chua

Facebook Research 43 Dec 30, 2022
Radar-to-Lidar: Heterogeneous Place Recognition via Joint Learning

radar-to-lidar-place-recognition This page is the coder of a pre-print, implemented by PyTorch. If you have some questions on this project, please fee

Huan Yin 37 Oct 09, 2022
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 06, 2023
Ensembling Off-the-shelf Models for GAN Training

Vision-aided GAN video (3m) | website | paper Can the collective knowledge from a large bank of pretrained vision models be leveraged to improve GAN t

345 Dec 28, 2022
PyTorch implementation of Value Iteration Networks (VIN): Clean, Simple and Modular. Visualization in Visdom.

VIN: Value Iteration Networks This is an implementation of Value Iteration Networks (VIN) in PyTorch to reproduce the results.(TensorFlow version) Key

Xingdong Zuo 215 Dec 07, 2022
Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Just playing with getting VQGAN+CLIP running locally, rather than having to use colab.

Nerdy Rodent 2.3k Jan 04, 2023
LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image.

This project is based on ultralytics/yolov3. LF-YOLO (Lighter and Faster YOLO) is used to detect defect of X-ray weld image. Download $ git clone http

26 Dec 13, 2022
Doge-Prediction - Coding Club prediction ig

Doge-Prediction Coding Club prediction ig Basically: Create an application that

1 Jan 10, 2022
Hack Camera, Microphone, Location, Clipboard With Just a Link. Also, Get Many Details About Victim's Device. And So On...

An Automated Tool to Hack Victim's Camera, Microphone, Location, Clipboard. Has 2 Extra Features. Version 1.1 Update Fixed Some Major Bugs Data Saving

ToxicNoob 36 Jan 07, 2023
Julia package for multiway (inverse) covariance estimation.

TensorGraphicalModels TensorGraphicalModels.jl is a suite of Julia tools for estimating high-dimensional multiway (tensor-variate) covariance and inve

Wayne Wang 3 Sep 23, 2022
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation)

This repo provides code for QB-Norm (Cross Modal Retrieval with Querybank Normalisation) Usage example python dynamic_inverted_softmax.py --sims_train

36 Dec 29, 2022
PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR) and Generative Adversarial Imitation Learning (GAIL).

PyTorch implementation of Advantage Actor Critic (A2C), Proximal Policy Optimization (PPO), Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation (ACKTR)

Ilya Kostrikov 3k Dec 31, 2022
Research code for Arxiv paper "Camera Motion Agnostic 3D Human Pose Estimation"

GMR(Camera Motion Agnostic 3D Human Pose Estimation) This repo provides the source code of our arXiv paper: Seong Hyun Kim, Sunwon Jeong, Sungbum Park

Seong Hyun Kim 1 Feb 07, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
Code to compute permutation and drop-column importances in Python scikit-learn models

Feature importances for scikit-learn machine learning models By Terence Parr and Kerem Turgutlu. See Explained.ai for more stuff. The scikit-learn Ran

Terence Parr 537 Dec 31, 2022