Code for the paper "Implicit Representations of Meaning in Neural Language Models"

Overview

Implicit Representations of Meaning in Neural Language Models

Preliminaries

Create and set up a conda environment as follows:

conda create -n state-probes python=3.7
conda activate state-probes
pip install -r requirements.txt

Install the appropriate torch 1.7.0 for your cuda version:

conda install pytorch==1.7.0 cudatoolkit=<cuda_version> -c pytorch

Before running any command below, run

export PYTHONPATH=.
export TOKENIZERS_PARALLELISM=true

Data

The Alchemy data is downloaded from their website.

wget https://nlp.stanford.edu/projects/scone/scone.zip
unzip scone.zip

The synthetic version of alchemy was generated by running:

echo 0 > id #the code requires a file called id with a number in it ...
python alchemy_artificial_generator.py --num_scenarios 3600 --output synth_alchemy_train
python alchemy_artificial_generator.py --num_scenarios 500 --output synth_alchemy_dev
python alchemy_artificial_generator.py --num_scenarios 900 --output synth_alchemy_test

You can also just download our generated data through:

wget http://web.mit.edu/bzl/www/synth_alchemy.tar.gz
tar -xzvf synth_alchemy.tar.gz

The Textworld data is under

wget http://web.mit.edu/bzl/www/tw_data.tar.gz
tar -xzvf tw_data.tar.gz

LM Training

To train a BART or T5 model on Alchemy data

python scripts/train_alchemy.py \
    --arch [t5|bart] [--no_pretrain] \
    [--synthetic] --encode_init_state NL

Saves model checkpoints under sconeModels/*.

To train a BART or T5 model on Textworld data

python scripts/train_textworld.py \
    --arch [t5/bart] [--no_pretrain] \
    --data tw_data/simple_traces --gamefile tw_games/simple_games

Saves model checkpoints nder twModels/*.

Probe Training & Evaluation

Alchemy

The main probe command is as follows:

python scripts/probe_alchemy.py \
    --arch [bart|t5] --lm_save_path <path_to_lm_checkpoint> [--no_pretrain] \
    --encode_init_state NL --nonsynthetic \
    --probe_target single_beaker_final.NL --localizer_type single_beaker_init_full \
    --probe_type linear --probe_agg_method avg \
    --encode_tgt_state NL.[bart|t5] --tgt_agg_method avg \
    --batchsize 128 --eval_batchsize 1024 --lr 1e-4

For evaluation, add --eval_only --probe_save_path <path_to_probe_checkpoint>. This will save model predictions to a .jsonl file under the same directory as the probe checkpoint.

Add --control_input for No LM experiment.

Change --probe_target to single_beaker_init.NL to decode initial state.

For localization experiments, set --localizer_type single_beaker_init_{$i}.offset{$off} for some token i in {article, pos.[R0|R1|R2], beaker.[R0|R1], verb, amount, color, end_punct} and some integer offset off between 0 and 6.

Saves probe checkpoints under probe_models_alchemy/*.

Intervention experiment results follow from running the script:

python scripts/intervention.py \
    --arch [bart|t5] \
    --encode_init_state NL \
    --create_type drain_1 \
    --lm_save_path <path_to_lm_checkpoint>

which creates two contexts and replaces a select few encoded tokens to modify the underlying belief state.

Textworld

Begin by creating the full set of encoded proposition representations

python scripts/get_all_tw_facts.py \
    --data tw_data/simple_traces --gamefile tw_data/simple_games \
    --state_model_arch [bart|t5] \
    --probe_target belief_facts_pair \
    --state_model_path [None|pretrain|<path_to_lm_checkpoint>] \
    --out_file <path_to_prop_encodings>

Run the probe with

python scripts/probe_textworld.py \
    --arch [bart|t5] --data tw_data/simple_traces --gamefile tw_data/simple_games \
    --probe_target final.full_belief_facts_pair --encode_tgt_state NL.[bart|t5] \
    --localizer_type belief_facts_pair_[first|last|all] --probe_type 3linear_classify \
    --probe_agg_method avg --tgt_agg_method avg \
    --lm_save_path <path_to_lm_checkpoint> [--no_pretrain] \
    --ents_to_states_file <path_to_prop_encodings> \
    --eval_batchsize 256 --batchsize 32

For evaluation, add --eval_only --probe_save_path <path_to_probe_checkpoint>. This will save model predictions to a .jsonl file under the same directory as the probe checkpoint.

Add --control_input for No LM experiment.

Change --probe_target to init.full_belief_facts_pair to decode initial state.

For remap experiments, change --probe_target to final.full_belief_facts_pair.control_with_rooms.

For decoding from just one side of propositions, replace any instance of belief_facts_pair (in --probe_target and --localizer_type) with belief_facts_single and rerun both commands (first get the full proposition encodings, then run the probe).

Saves probe checkpoints under probe_models_textworld/*.

Print Metrics

Print full metrics (state EM, entity EM, subdivided by relations vs. propositions, etc.) using scripts/print_metrics.py.

python scripts/print_metrics.py \
    --arch [bart|t5] --domain [alchemy|textworld] \
    --pred_files <path_to_model_predictions_1>,<path_to_model_predictions_2>,<path_to_model_predictions_3>,... \
    [--use_remap_domain --remap_fn <path_to_remap_model_predictions>] \
    [--single_side_probe]
PyTorch implementation for paper Neural Marching Cubes.

NMC PyTorch implementation for paper Neural Marching Cubes, Zhiqin Chen, Hao Zhang. Paper | Supplementary Material (to be updated) Citation If you fin

Zhiqin Chen 109 Dec 27, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
TRACER: Extreme Attention Guided Salient Object Tracing Network implementation in PyTorch

TRACER: Extreme Attention Guided Salient Object Tracing Network This paper was accepted at AAAI 2022 SA poster session. Datasets All datasets are avai

Karel 118 Dec 29, 2022
A python package for generating, analyzing and visualizing building shadows

pybdshadow Introduction pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic

Qing Yu 13 Nov 30, 2022
HTSeq is a Python library to facilitate processing and analysis of data from high-throughput sequencing (HTS) experiments.

HTSeq DEVS: https://github.com/htseq/htseq DOCS: https://htseq.readthedocs.io A Python library to facilitate programmatic analysis of data from high-t

HTSeq 57 Dec 20, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Beckham 0 Jul 20, 2022
tensorflow code for inverse face rendering

InverseFaceRender This is tensorflow code for our project: Learning Inverse Rendering of Faces from Real-world Videos. (https://arxiv.org/abs/2003.120

Yuda Qiu 18 Nov 16, 2022
Implementation of the paper "Shapley Explanation Networks"

Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta

68 Dec 27, 2022
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
This is the face keypoint train code of project face-detection-project

face-key-point-pytorch 1. Data structure The structure of landmarks_jpg is like below: |--landmarks_jpg |----AFW |------AFW_134212_1_0.jpg |------AFW_

I‘m X 3 Nov 27, 2022
Fast RFC3339 compliant Python date-time library

udatetime: Fast RFC3339 compliant date-time library Handling date-times is a painful act because of the sheer endless amount of formats used by people

Simon Pirschel 235 Oct 25, 2022
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
Boosted neural network for tabular data

XBNet - Xtremely Boosted Network Boosted neural network for tabular data XBNet is an open source project which is built with PyTorch which tries to co

Tushar Sarkar 175 Jan 04, 2023
MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tricks

MEAL-V2 This is the official pytorch implementation of our paper: "MEAL V2: Boosting Vanilla ResNet-50 to 80%+ Top-1 Accuracy on ImageNet without Tric

Zhiqiang Shen 653 Dec 19, 2022
DeepFaceLab fork which provides IPython Notebook to use DFL with Google Colab

DFL-Colab — DeepFaceLab fork for Google Colab This project provides you IPython Notebook to use DeepFaceLab with Google Colaboratory. You can create y

779 Jan 05, 2023
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps

Takuma Yagi 13 Nov 07, 2022
Instance-Dependent Partial Label Learning

Instance-Dependent Partial Label Learning Installation pip install -r requirements.txt Run the Demo benchmark-random mnist python -u main.py --gpu 0 -

17 Dec 29, 2022
PyTorch Implementation of AnimeGANv2

PyTorch implementation of AnimeGANv2

4k Jan 07, 2023