6D Grasping Policy for Point Clouds

Overview

GA-DDPG

[website, paper]

image

Installation

git clone https://github.com/liruiw/GA-DDPG.git --recursive
  1. Setup: Ubuntu 16.04 or above, CUDA 10.0 or above, python 2.7 / 3.6

    • (Required for Training) - Install OMG submodule and reuse conda environment.
    • (Docker) See OMG Docker for details.
    • (Demo) - Install GA-DDPG inside a new conda environment
      conda create --name gaddpg python=3.6.9
      conda activate gaddpg
      pip install -r requirements.txt
      
  2. Install PointNet++

  3. Download environment data bash experiments/scripts/download_data.sh

Pretrained Model Demo

  1. Download pretrained models bash experiments/scripts/download_model.sh
  2. Demo model test bash experiments/scripts/test_demo.sh
Example 1 Example 2

Save Data and Offline Training

  1. Download example offline data bash experiments/scripts/download_offline_data.sh The .npz dataset (saved replay buffer) can be found in data/offline_data and can be loaded for training.
  2. To save extra gpus for online rollouts, use the offline training script bash ./experiments/scripts/train_offline.sh bc_aux_dagger.yaml BC
  3. Saving dataset bash ./experiments/scripts/train_online_save_buffer.sh bc_save_data.yaml BC.

Online Training and Testing

  1. We use ray for parallel rollout and training. The training scripts might require adjustment according to the local machine. See config.py for some notes.
  2. Training online bash ./experiments/scripts/train_online_visdom.sh td3_critic_aux_policy_aux.yaml DDPG. Use visdom and tensorboard to monitor.
  3. Testing on YCB objects bash ./experiments/scripts/test_ycb.sh demo_model. Replace demo_model with trained models. Logs and videos would be saved to output_misc

Note

  1. Checkout core/test_realworld_ros_final.py for an example of real-world usages.
  2. Related Works (OMG, ACRONYM, 6DGraspNet, 6DGraspNet-Pytorch, ContactGraspNet, Unseen-Clustering)
  3. To use the full Acronym dataset with Shapenet meshes, please follow ACRONYM to download the meshes and grasps and follow OMG-Planner to process and save in /data. filter_shapenet.json can then be used for training.
  4. Please use Github issue tracker to report bugs. For other questions please contact Lirui Wang.

File Structure

├── ...
├── GADDPG
|   |── data 		# training data
|   |   |── grasps 		# grasps from the ACRONYM dataset
|   |   |── objects 		# object meshes, sdf, urdf, etc
|   |   |── robots 		# robot meshes, urdf, etc
|   |   └── gaddpg_scenes	 	# test scenes
|   |── env 		# environment-related code
|   |   |── panda_scene 		# environment and task
|   |   └── panda_gripper_hand_camera 		# franka panda with gripper and camera
|   |── OMG 		# expert planner submodule
|   |── experiments 		# experiment scripts
|   |   |── config 		# hyperparameters for training, testing and environment
|   |   |── scripts 		# main running scripts
|   |   |── model_spec 		# network architecture spec
|   |   |── cfgs 		# experiment config and hyperparameters
|   |   └── object_index 		# object indexes
|   |── core 		# agents and learning
|   |   |──  train_online 		# online training
|   |   |──  train_test_offline 	# testing and offline training
|   |   |──  network 		# network architecture
|   |   |──  test_realworld_ros_final 		# real-world script example
|   |   |──  agent 		# main agent code
|   |   |──  replay_memory 		# replay buffer
|   |   |──  trainer 	# ray-related training setup
|   |   └── ...
|   |── output 		# trained model
|   |── output_misc 	# log and videos
|   └── ...
└── ...

Citation

If you find GA-DDPG useful in your research, please consider citing:

@inproceedings{wang2020goal,
	author    = {Lirui Wang, Yu Xiang, Wei Yang, Arsalan Mousavian, and Dieter Fox},
	title     = {Goal-Auxiliary Actor-Critic for 6D Robotic Grasping with Point Clouds},
	booktitle = {arXiv:2010.00824},
	year      = {2020}
}

License

The GA-DDPG is licensed under the MIT License.

Owner
Lirui Wang
MIT CSAIL Ph.D. Student. Previous UWCSE and NVIDIA.
Lirui Wang
Large-scale language modeling tutorials with PyTorch

Large-scale language modeling tutorials with PyTorch 안녕하세요. 저는 TUNiB에서 머신러닝 엔지니어로 근무 중인 고현웅입니다. 이 자료는 대규모 언어모델 개발에 필요한 여러가지 기술들을 소개드리기 위해 마련하였으며 기본적으로

TUNiB 172 Dec 29, 2022
Pytorch version of VidLanKD: Improving Language Understanding viaVideo-Distilled Knowledge Transfer

VidLanKD Implementation of VidLanKD: Improving Language Understanding via Video-Distilled Knowledge Transfer by Zineng Tang, Jaemin Cho, Hao Tan, Mohi

Zineng Tang 54 Dec 20, 2022
DANet for Tabular data classification/ regression.

Deep Abstract Networks A PyTorch code implemented for the submission DANets: Deep Abstract Networks for Tabular Data Classification and Regression. Do

Ronnie Rocket 55 Sep 14, 2022
ML model to classify between cats and dogs

Cats-and-dogs-classifier This is my first ML model which can classify between cats and dogs. Here the accuracy is around 75%, however , the accuracy c

Sharath V 4 Aug 20, 2021
This is a file about Unet implemented in Pytorch

Unet this is an implemetion of Unet in Pytorch and it's architecture is as follows which is the same with paper of Unet component of Unet Convolution

Dragon 1 Dec 03, 2021
Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

LILA LILA: Language-Informed Latent Actions Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assi

Sidd Karamcheti 11 Nov 25, 2022
HybridNets: End-to-End Perception Network

HybridNets: End2End Perception Network HybridNets Network Architecture. HybridNets: End-to-End Perception Network by Dat Vu, Bao Ngo, Hung Phan 📧 FPT

Thanh Dat Vu 370 Dec 29, 2022
Code for 'Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning', ICCV 2021

CMIC-Retrieval Code for Single Image 3D Shape Retrieval via Cross-Modal Instance and Category Contrastive Learning. ICCV 2021. Introduction In this wo

42 Nov 17, 2022
Toward Spatially Unbiased Generative Models (ICCV 2021)

Toward Spatially Unbiased Generative Models Implementation of Toward Spatially Unbiased Generative Models (ICCV 2021) Overview Recent image generation

Jooyoung Choi 88 Dec 01, 2022
Ros2-voiceroid2 - ROS2 wrapper package of VOICEROID2

ros2_voiceroid2 ROS2 wrapper package of VOICEROID2 Windows Only Installation Ins

Nkyoku 1 Jan 23, 2022
Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation

Cross-Image Region Mining with Region Prototypical Network for Weakly Supervised Segmentation The code of: Cross-Image Region Mining with Region Proto

LiuWeide 16 Nov 26, 2022
Official implementation for "Low-light Image Enhancement via Breaking Down the Darkness"

Low-light Image Enhancement via Breaking Down the Darkness by Qiming Hu, Xiaojie Guo. 1. Dependencies Python3 PyTorch=1.0 OpenCV-Python, TensorboardX

Qiming Hu 30 Jan 01, 2023
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
🤗 Paper Style Guide

🤗 Paper Style Guide (Work in progress, send a PR!) Libraries to Know booktabs natbib cleveref Either seaborn, plotly or altair for graphs algorithmic

Hugging Face 66 Dec 12, 2022
Turi Create simplifies the development of custom machine learning models.

Quick Links: Installation | Documentation | WWDC 2019 | WWDC 2018 Turi Create Check out our talks at WWDC 2019 and at WWDC 2018! Turi Create simplifie

Apple 10.9k Jan 01, 2023
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
Train SN-GAN with AdaBelief

SNGAN-AdaBelief Train a state-of-the-art spectral normalization GAN with AdaBelief https://github.com/juntang-zhuang/Adabelief-Optimizer Acknowledgeme

Juntang Zhuang 10 Jun 11, 2022
Official PyTorch implementation of the paper "TEMOS: Generating diverse human motions from textual descriptions"

TEMOS: TExt to MOtionS Generating diverse human motions from textual descriptions Description Official PyTorch implementation of the paper "TEMOS: Gen

Mathis Petrovich 187 Dec 27, 2022
Galaxy images labelled by morphology (shape). Aimed at ML development and teaching

Galaxy images labelled by morphology (shape). Aimed at ML debugging and teaching.

Mike Walmsley 14 Nov 28, 2022
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022