Code & Experiments for "LILA: Language-Informed Latent Actions" to be presented at the Conference on Robot Learning (CoRL) 2021.

Related tags

Deep Learninglila
Overview

LILA

LILA: Language-Informed Latent Actions

Code and Experiments for Language-Informed Latent Actions (LILA), for using natural language to guide assistive teleoperation.

This code bundles code that can be deployed on a Franka Emika Panda Arm, including utilities for processing collected demonstrations (you can find our actual demo data in the data/ directory!), training various LILA and Imitation Learning models, and running live studies.


Quickstart

Assumes lila is the current working directory! This repository also comes with out-of-the-box linting and strict pre-commit checking... should you wish to turn off this functionality you can omit the pre-commit install lines below. If you do choose to use these features, you can run make autoformat to automatically clean code, and make check to identify any violations.

Repository Structure

High-level overview of repository file-tree:

  • conf - Quinine Configurations (.yaml) for various runs (used in lieu of argparse or typed-argument-parser)
  • environments - Serialized Conda Environments for running on CPU. Other architectures/CUDA toolkit environments can be added here as necessary.
  • robot/ - Core libfranka robot control code -- simple joint velocity controll w/ Gripper control.
  • src/ - Source Code - has all utilities for preprocessing, Lightning Model definitions, utilities.
    • preprocessing/ - Preprocessing Code for creating Torch Datasets for Training LILA/Imitation Models.
    • models/ - Lightning Modules for LILA-FiLM and Imitation-FiLM Architectures.
  • train.py - Top-Level (main) entry point to repository, for training and evaluating models. Run this first, pointing it at the appropriate configuration in conf/!.
  • Makefile - Top-level Makefile (by default, supports conda serialization, and linting). Expand to your needs.
  • .flake8 - Flake8 Configuration File (Sane Defaults).
  • .pre-commit-config.yaml - Pre-Commit Configuration File (Sane Defaults).
  • pyproject.toml - Black and isort Configuration File (Sane Defaults).+ README.md - You are here!
  • README.md - You are here!
  • LICENSE - By default, research code is made available under the MIT License.

Local Development - CPU (Mac OS & Linux)

Note: Assumes that conda (Miniconda or Anaconda are both fine) is installed and on your path. Use the -cpu environment file.

conda env create -f environments/environment-cpu.yaml
conda activate lila
pre-commit install

GPU Development - Linux w/ CUDA 11.0

conda env create -f environments/environment-gpu.yaml  # Choose CUDA Kernel based on Hardware - by default used 11.0!
conda activate lila
pre-commit install

Note: This codebase should work naively for all PyTorch > 1.7, and any CUDA version; if you run into trouble building this repository, please file an issue!


Training LILA or Imitation Models

To train models using the already collected demonstrations.

# LILA
python train.py --config conf/lila-config.yaml

# No-Language Latent Actions
python train.py --config conf/no-lang-config.yaml

# Imitatation Learning (Behavioral Cloning w/ DART-style Augmentation)
python train.py --config conf/imitation-config.yaml

This will dump models to runs/{lila-final, no-lang-final, imitation-final}/. These paths are hard-coded in the respective teleoperation/execution files below; if you change these paths, be sure to change the below files as well!

Teleoperating with LILA or End-Effector Control

First, make sure to add the custom Velocity Controller written for the Franka Emika Panda Robot Arm (written using Libfranka) to ~/libfranka/examples on your robot control box. The controller can be found in robot/libfranka/lilaVelocityController.cpp.

Then, make sure to update the path of the model trained in the previous step (for LILA) in teleoperate.py. Finally, you can drop into controlling the robot with a LILA model (and Joystick - make sure it's plugged in!) with:

# LILA Control
python teleoperate.py

# For No-Language Control, just change the arch!
python teleoperate.py --arch no-lang

# Pure End-Effector Control is also implemented by Default
python teleoperate.py --arch endeff

Running Imitation Learning

Add the Velocity Controller as described above. Then, make sure to update the path to the trained model in imitate.py and run the following:

python imitate.py

Collecting Kinesthetic Demonstrations

Each lab (and corresponding robot) is built with a different stack, and different preferred ways of recording Kinesthetic demonstrations. We have a rudimentary script record.py that shows how we do this using sockets, and the default libfranka readState.cpp built-in script. This script dumps demonstrations that can be immediately used to train latent action models.

Start-Up from Scratch

In case the above conda environment loading does not work for you, here are the concrete package dependencies required to run LILA:

conda create --name lila python=3.8
conda activate lila
conda install pytorch torchvision torchaudio -c pytorch
conda install ipython jupyter
conda install pytorch-lightning -c conda-forge

pip install black flake8 isort matplotlib pre-commit pygame quinine transformers typed-argument-parser wandb
Owner
Sidd Karamcheti
PhD Student at Stanford & Research Intern at Hugging Face 🤗
Sidd Karamcheti
Testing and Estimation of structural breaks in Stata

xtbreak estimating and testing for many known and unknown structural breaks in time series and panel data. For an overview of xtbreak test see xtbreak

Jan Ditzen 13 Jun 19, 2022
Codes for AAAI22 paper "Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum"

Paper For more details, please see our paper Learning to Solve Travelling Salesman Problem with Hardness-Adaptive Curriculum which has been accepted a

14 Sep 30, 2022
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

567 Dec 26, 2022
Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX.

ONNX Object Localization Network Python scripts performing class agnostic object localization using the Object Localization Network model in ONNX. Ori

Ibai Gorordo 15 Oct 14, 2022
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.

Image Segmentation Keras : Implementation of Segnet, FCN, UNet, PSPNet and other models in Keras. Implementation of various Deep Image Segmentation mo

Divam Gupta 2.6k Jan 05, 2023
This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper

DeepShift This is project is the implementation of the DeepShift: Towards Multiplication-Less Neural Networks paper, that aims to replace multiplicati

Mostafa Elhoushi 88 Dec 23, 2022
The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate. Website • Key Features • How To Use • Docs •

Pytorch Lightning 21.1k Jan 01, 2023
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Event Sourced Bank A "wide but shallow" example of using the Python event sourci

3 Mar 09, 2022
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
A template repository for submitting a job to the Slurm Cluster installed at the DISI - University of Bologna

Cluster di HPC con GPU per esperimenti di calcolo (draft version 1.0) Per poter utilizzare il cluster il primo passo è abilitare l'account istituziona

20 Dec 16, 2022
Locationinfo - A script helps the user to show network information such as ip address

Description This script helps the user to show network information such as ip ad

Roxcoder 1 Dec 30, 2021
Direct Multi-view Multi-person 3D Human Pose Estimation

Implementation of NeurIPS-2021 paper: Direct Multi-view Multi-person 3D Human Pose Estimation [paper] [video-YouTube, video-Bilibili] [slides] This is

Sea AI Lab 251 Dec 30, 2022
Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning

T2I_CL This is the official Pytorch implementation of the paper Improving Text-to-Image Synthesis Using Contrastive Learning Requirements Linux Python

42 Dec 31, 2022
Easy-to-use library to boost AI inference leveraging state-of-the-art optimization techniques.

NEW RELEASE How Nebullvm Works • Tutorials • Benchmarks • Installation • Get Started • Optimization Examples Discord | Website | LinkedIn | Twitter Ne

Nebuly 1.7k Dec 31, 2022
ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin et al., 2020).

ReConsider ReConsider is a re-ranking model that re-ranks the top-K (passage, answer-span) predictions of an Open-Domain QA Model like DPR (Karpukhin

Facebook Research 47 Jul 26, 2022
Yolov3 pytorch implementation

YOLOV3 Pytorch实现 在bubbliiing大佬代码的基础上进行了修改,添加了部分注释。 预训练模型 预训练模型来源于bubbliiing。 链接:https://pan.baidu.com/s/1ncREw6Na9ycZptdxiVMApw 提取码:appk 训练自己的数据集 按照VO

4 Aug 27, 2022
QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

QuickAI is a Python library that makes it extremely easy to experiment with state-of-the-art Machine Learning models.

152 Jan 02, 2023