RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

Overview

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

Real tiem detection

Real-time detection performance.

This repo contains the code and extra simulation results supporting the paper 'Robust Moving Target Defence Against False Data Injection Attacks in Power Grids' by Wangkun Xu, Imad M. Jaimoukha, and Fei Teng. The authors are with the Control and Power Group, Dept. of EEE, Imperial College London.

Note: The current version is incomplete, detailed algorithms are coming soon.

Installation

This project requires Python packages to run. The testing OS is Windows.

  1. Install the latest version Anaconda to your OS.
  2. Create a new env in Anaconda Prompt by conda create -n robust-mtd python=3.8.12.
  3. Direct to the env by conda activate robust-mtd.
  4. Install all requirements by conda install --file requirements.txt.
  5. Download everything to your PC in your_path and redirect to your path by cd your_path.

Packages

PYPOWER

POPOWER is a power flow and optimal power flow solver. It is part of MATPOWER to the Python programming language. We will use PYPOWER as the environment to build the system matrices, implement attacks and implement the MTD.

SciPy

SciPy provides algorithms for optimization, integration, interpolation, eigenvalue problems, algebraic equations, differential equations, statistics and many other classes of problems. In specific, we use the open source optimization solve 'Sequential Least Squares Programming (SLSQP)' to solve the nonlinear programming problem.

Running and Testing

  1. Change the test system, algorithm, and constraints, e.g. change everything in input_setting.py under the line:

    """
    EDIT HERE : CHANGE YOUR SETTINGS HERE!
    """ 
    

    Do not change elsewhere!

    The current support tests include:

    • case: IEEE case-6ww, case-14, and case-57;
    • MTD perturbation ratio: $\tau=0.2,0.3,0.4,0.5$;
    • Placement of D-FACTS devices: All, outcome of the 'D-FACTS Devices Placement Algorithm' (using the minimum number of D-FACTS devices to have minimum k while covering all necessary buses), and the outcome of the 'D-FACTS Devices Placement Algorithm' (using the minimum number of D-FACTS devices to have minimum k);
    • hidden_MTD: True or False. Normally, the robust algorithm with complete MTD configuration is not tested with the hiddenness;
    • column_constraint: True or False. If True, the constraint in principle 2 is added.

    You can also change:

    • The measurement noise covariance matrix;
    • The FPR of BDD;
    • The attack strength under test;

    The code is flexible. You can also add your own system as long as it uses PYPOWER or MATPOWER to formulate.

Extra Simulation Result

Owner
Ph.D. student at Control and Power Group, Imperial College London.
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
Diagnostic tests for linguistic capacities in language models

LM diagnostics This repository contains the diagnostic datasets and experimental code for What BERT is not: Lessons from a new suite of psycholinguist

61 Jan 02, 2023
Automatic Number Plate Recognition using Contours and Convolution Neural Networks (CNN)

Cite our paper if you find this project useful https://www.ijariit.com/manuscripts/v7i4/V7I4-1139.pdf Abstract Image processing technology is used in

Adithya M 2 Jun 28, 2022
Deep Learning Training Scripts With Python

Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio

Multicore Computing Research Lab 16 Dec 15, 2022
Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction

Attention-based CNN-LSTM and XGBoost hybrid model for stock prediction Requirements The code has been tested running under Python 3.7.4, with the foll

zshicode 84 Jan 01, 2023
Audio Visual Emotion Recognition using TDA

Audio Visual Emotion Recognition using TDA RAVDESS database with two datasets analyzed: Video and Audio dataset: Audio-Dataset: https://www.kaggle.com

Combinatorial Image Analysis research group 3 May 11, 2022
WSDM2022 Challenge - Large scale temporal graph link prediction

WSDM 2022 Large-scale Temporal Graph Link Prediction - Baseline and Initial Test Set WSDM Cup Website link Link to this challenge This branch offers A

Deep Graph Library 34 Dec 29, 2022
Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

CMT Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award) [Paper] [Site] Directory Struc

Zhaokai Wang 198 Dec 27, 2022
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

EFENet EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation Code is a bit messy now. I woud clean up soon. For training the EF

Yaping Zhao 19 Nov 05, 2022
Evolving neural network parameters in JAX.

Evolving Neural Networks in JAX This repository holds code displaying techniques for applying evolutionary network training strategies in JAX. Each sc

Trevor Thackston 6 Feb 12, 2022
[2021 MultiMedia] CONQUER: Contextual Query-aware Ranking for Video Corpus Moment Retrieval

CONQUER: Contexutal Query-aware Ranking for Video Corpus Moment Retreival PyTorch implementation of CONQUER: Contexutal Query-aware Ranking for Video

Hou zhijian 23 Dec 26, 2022
R-Drop: Regularized Dropout for Neural Networks

R-Drop: Regularized Dropout for Neural Networks R-drop is a simple yet very effective regularization method built upon dropout, by minimizing the bidi

756 Dec 27, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contrastive Image Deraining"

SAPNet This repository contains the official Pytorch implementation of the paper: "SAPNet: Segmentation-Aware Progressive Network for Perceptual Contr

11 Oct 17, 2022
Pointer-generator - Code for the ACL 2017 paper Get To The Point: Summarization with Pointer-Generator Networks

Note: this code is no longer actively maintained. However, feel free to use the Issues section to discuss the code with other users. Some users have u

Abi See 2.1k Jan 04, 2023
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022
Syntax-Aware Action Targeting for Video Captioning

Syntax-Aware Action Targeting for Video Captioning Code for SAAT from "Syntax-Aware Action Targeting for Video Captioning" (Accepted to CVPR 2020). Th

59 Oct 13, 2022
MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research

MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research.The pipeline is based on nn-UNet an

QIMP team 30 Jan 01, 2023
Time Series Forecasting with Temporal Fusion Transformer in Pytorch

Forecasting with the Temporal Fusion Transformer Multi-horizon forecasting often contains a complex mix of inputs – including static (i.e. time-invari

Nicolás Fornasari 6 Jan 24, 2022