Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.

Overview

Jittor-MLP

Unofficial Implementation of MLP-Mixer, gMLP, resMLP, Vision Permutator, S2MLPv2, RaftMLP, ConvMLP, ConvMixer in Jittor and PyTorch.

What's New

Rearrange, Reduce in einops for Jittor is support ! Easier to convert Transformer-based and MLP-based models from PyTorch to Jittor!

  • from .einops_my.layers.jittor import Rearrange, Reduce (shown in ./models_jittor/raft_mlp.py)

Models

  • Jittor and Pytorch implementaion of gMLP

Usage

import jittor as jt
from models_jittor import gMLPForImageClassification as gMLP_jt
from models_jittor import ResMLPForImageClassification as ResMLP_jt
from models_jittor import MLPMixerForImageClassification as MLPMixer_jt
from models_jittor import ViP as ViP_jt
from models_jittor import S2MLPv2 as S2MLPv2_jt
from models_jittor import ConvMixer as ConvMixer_jt
from models_jittor import convmlp_s as ConvMLP_s_jt 
from models_jittor import convmlp_l as ConvMLP_l_jt 
from models_jittor import convmlp_m as ConvMLP_m_jt 
from models_jittor import RaftMLP as RaftMLP_jt

model_jt = MLPMixer_jt(
    image_size=(224,112),
    patch_size=16,
    in_channels=3,
    num_classes=1000,
    d_model=256,
    depth=12,
)

images = jt.randn(8, 3, 224, 224)
with jt.no_grad():
    output = model_jt(images)
print(output.shape) # (8, 1000)

############################################################################

import torch
from models_pytorch import gMLPForImageClassification as gMLP_pt
from models_pytorch import ResMLPForImageClassification as ResMLP_pt
from models_pytorch import MLPMixerForImageClassification as MLPMixer_pt
from models_pytorch import ViP as ViP_pt
from models_pytorch import S2MLPv2 as S2MLPv2_pt 
from models_pytorch import ConvMixer as ConvMixer_pt 
from models_pytorch import convmlp_s as ConvMLP_s_pt 
from models_pytorch import convmlp_l as ConvMLP_l_pt 
from models_pytorch import convmlp_m as ConvMLP_m_pt 
from models_pytorch import RaftMLP as RaftMLP_pt

model_pt = ViP_pt(
    image_size=224,
    patch_size=16,
    in_channels=3,
    num_classes=1000,
    d_model=256,
    depth=30,
    segments = 16,
    weighted = True
)

images = torch.randn(8, 3, 224, 224)

with torch.no_grad():
    output = model_pt(images)
print(output.shape) # (8, 1000)


############################## Non-square images and patch sizes #########################

model_jt = ViP_jt(
    image_size=(224, 112),
    patch_size=(16, 8),
    in_channels=3,
    num_classes=1000,
    d_model=256,
    depth=30,
    segments = 16,
    weighted = True
)
images = jt.randn(8, 3, 224, 112)
with jt.no_grad():
    output = model_jt(images)
print(output.shape) # (8, 1000)

############################## 2 Stages S2MLPv2 #########################
model_pt = S2MLPv2_pt(
    in_channels = 3,
    image_size = (224,224),
    patch_size = [(7,7), (2,2)],
    d_model = [192, 384],
    depth = [4, 14],
    num_classes = 1000, 
    expansion_factor = [3, 3]
)

############################## ConvMLP With Pretrain Params #########################
model_jt = ConvMLP_s_jt(pretrained = True, num_classes = 1000)


############################## RaftMLP #########################
model_jt = RaftMLP_jt(
        layers = [
            {"depth": 12,
            "dim": 768,
            "patch_size": 16,
            "raft_size": 4}
        ],
        gap = True
    )

Citations

@misc{tolstikhin2021mlpmixer,
    title   = {MLP-Mixer: An all-MLP Architecture for Vision},
    author  = {Ilya Tolstikhin and Neil Houlsby and Alexander Kolesnikov and Lucas Beyer and Xiaohua Zhai and Thomas Unterthiner and Jessica Yung and Daniel Keysers and Jakob Uszkoreit and Mario Lucic and Alexey Dosovitskiy},
    year    = {2021},
    eprint  = {2105.01601},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@misc{hou2021vision,
    title   = {Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition},
    author  = {Qibin Hou and Zihang Jiang and Li Yuan and Ming-Ming Cheng and Shuicheng Yan and Jiashi Feng},
    year    = {2021},
    eprint  = {2106.12368},
    archivePrefix = {arXiv},
    primaryClass = {cs.CV}
}
@article{liu2021pay,
  title={Pay Attention to MLPs},
  author={Liu, Hanxiao and Dai, Zihang and So, David R and Le, Quoc V},
  journal={arXiv preprint arXiv:2105.08050},
  year={2021}
}
@article{touvron2021resmlp,
  title={Resmlp: Feedforward networks for image classification with data-efficient training},
  author={Touvron, Hugo and Bojanowski, Piotr and Caron, Mathilde and Cord, Matthieu and El-Nouby, Alaaeldin and Grave, Edouard and Joulin, Armand and Synnaeve, Gabriel and Verbeek, Jakob and J{\'e}gou, Herv{\'e}},
  journal={arXiv preprint arXiv:2105.03404},
  year={2021}
}
@article{yu2021s,
  title={S $\^{} 2$-MLPv2: Improved Spatial-Shift MLP Architecture for Vision},
  author={Yu, Tan and Li, Xu and Cai, Yunfeng and Sun, Mingming and Li, Ping},
  journal={arXiv preprint arXiv:2108.01072},
  year={2021}
}
@article{li2021convmlp,
  title={ConvMLP: Hierarchical Convolutional MLPs for Vision},
  author={Li, Jiachen and Hassani, Ali and Walton, Steven and Shi, Humphrey},
  journal={arXiv preprint arXiv:2109.04454},
  year={2021}
}
@article{tatsunami2021raftmlp,
  title={RaftMLP: Do MLP-based Models Dream of Winning Over Computer Vision?},
  author={Tatsunami, Yuki and Taki, Masato},
  journal={arXiv preprint arXiv:2108.04384},
  year={2021}
}
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking".

SCT This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking" The spatial-channel Transformer (SCT) enhan

Intelligent Vision for Robotics in Complex Environment 27 Nov 23, 2022
How to Predict Stock Prices Easily Demo

How-to-Predict-Stock-Prices-Easily-Demo How to Predict Stock Prices Easily - Intro to Deep Learning #7 by Siraj Raval on Youtube ##Overview This is th

Siraj Raval 752 Nov 16, 2022
A Fast Monotone Rotating Shallow Water model

pyRSW A Fast Monotone Rotating Shallow Water model How fast? As fast as a sustained 2 Gflop/s per core on a 2.5 GHz cpu (or 2048 Gflop/s with 1024 cor

Guillaume Roullet 13 Sep 28, 2022
Awesome-google-colab - Google Colaboratory Notebooks and Repositories

Unofficial Google Colaboratory Notebook and Repository Gallery Please contact me to take over and revamp this repo (it gets around 30k views and 200k

Derek Snow 1.2k Jan 03, 2023
Official implementation of Representer Point Selection via Local Jacobian Expansion for Post-hoc Classifier Explanation of Deep Neural Networks and Ensemble Models at NeurIPS 2021

Representer Point Selection via Local Jacobian Expansion for Classifier Explanation of Deep Neural Networks and Ensemble Models This repository is the

Yi(Amy) Sui 2 Dec 01, 2021
Official PyTorch implementation of "Evolving Search Space for Neural Architecture Search"

Evolving Search Space for Neural Architecture Search Usage Install all required dependencies in requirements.txt and replace all ..path/..to in the co

Yuanzheng Ci 10 Oct 24, 2022
Random Erasing Data Augmentation. Experiments on CIFAR10, CIFAR100 and Fashion-MNIST

Random Erasing Data Augmentation =============================================================== black white random This code has the source code for

Zhun Zhong 654 Dec 26, 2022
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

A Large-Scale Dataset for Spinal Vertebrae Segmentation in Computed Tomography

ICT.MIRACLE lab 75 Dec 26, 2022
Pervasive Attention: 2D Convolutional Networks for Sequence-to-Sequence Prediction

This is a fork of Fairseq(-py) with implementations of the following models: Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Se

Maha 490 Dec 15, 2022
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders"

AAVAE Official implementation of the paper "AAVAE: Augmentation-AugmentedVariational Autoencoders" Abstract Recent methods for self-supervised learnin

Grid AI Labs 48 Dec 12, 2022
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
Improving the robustness and performance of biomedical NLP models through adversarial training

RobustBioNLP Improving the robustness and performance of biomedical NLP models through adversarial training In this repository you can find suppliment

Milad Moradi 3 Sep 20, 2022
Exploring Simple Siamese Representation Learning

G-SimSiam A PyTorch implementation which refers to repo for the paper Exploring Simple Siamese Representation Learning by Xinlei Chen & Kaiming He Add

zhuyun 1 Dec 19, 2021
The ICS Chat System project for NYU Shanghai Fall 2021

ICS_Chat_System [Catenger] This is the ICS Chat System project for NYU Shanghai Fall 2021 Creators: Shavarsh Melikyan, Skyler Chen and Arghya Sarkar,

1 Dec 20, 2021
PatrickStar enables Larger, Faster, Greener Pretrained Models for NLP. Democratize AI for everyone.

PatrickStar: Parallel Training of Large Language Models via a Chunk-based Memory Management Meeting PatrickStar Pre-Trained Models (PTM) are becoming

Tencent 633 Dec 28, 2022