[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Overview

Undistillable: Making A Nasty Teacher That CANNOT teach students

License: MIT

"Undistillable: Making A Nasty Teacher That CANNOT teach students"

Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang
In ICLR 2021 Spotlight Oral

Overview

  • We propose the concept of Nasty Teacher, a defensive approach to prevent knowledge leaking and unauthorized model cloning through KD without sacrificing performance.
  • We propose a simple yet efficient algorithm, called self-undermining knowledge distillation, to directly build a nasty teacher through self-training, requiring no additional dataset nor auxiliary network.

Prerequisite

We use Pytorch 1.4.0, and CUDA 10.1. You can install them with

conda install pytorch=1.4.0 torchvision=0.5.0 cudatoolkit=10.1 -c pytorch

It should also be applicable to other Pytorch and CUDA versions.

Then install other packages by

pip install -r requirements.txt

Usage

Teacher networks

Step 1: Train a normal teacher network
python train_scratch.py --save_path [XXX]

Here, [XXX] specifies the directory of params.json, which contains all hyperparameters to train a network. We already include all hyperparameters in experiments to reproduce the results in our paper.

For example, normally train a ResNet18 on CIFAR-10

python train_scratch.py --save_path experiments/CIFAR10/baseline/resnet18

After finishing training, you will get training.log, best_model.tar in that directory.

The normal teacher network will serve as the adversarial network for the training of the nasty teacher.

Step 2: Train a nasty teacher network
python train_nasty.py --save_path [XXX]

Again, [XXX] specifies the directory of params.json, which contains the information of adversarial networks and hyperparameters for training.
You need to specify the architecture of adversarial network and its checkpoint in this file.

For example, train a nasty ResNet18

python train_nasty.py --save_path experiments/CIFAR10/kd_nasty_resnet18/nasty_resnet18

Knowledge Distillation for Student networks

You can train a student distilling from normal or nasty teachers by

python train_kd.py --save_path [XXX]

Again, [XXX] specifies the directory of params.json, which contains the information of student networks and teacher networks

For example,

  • train a plain CNN distilling from a nasty ResNet18
python train_kd.py --save_path experiments/CIFAR10/kd_nasty_resnet18/cnn
  • Train a plain CNN distilling from a normal ResNet18
python train_kd.py --save_path experiments/CIFAR10/kd_normal_resnet18/cnn

Citation

@inproceedings{
ma2021undistillable,
title={Undistillable: Making A Nasty Teacher That {\{}CANNOT{\}} teach students},
author={Haoyu Ma and Tianlong Chen and Ting-Kuei Hu and Chenyu You and Xiaohui Xie and Zhangyang Wang},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=0zvfm-nZqQs}
}

Acknowledgement

Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
LieTransformer: Equivariant Self-Attention for Lie Groups

LieTransformer This repository contains the implementation of the LieTransformer used for experiments in the paper LieTransformer: Equivariant Self-At

OxCSML (Oxford Computational Statistics and Machine Learning) 50 Dec 28, 2022
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions

NeoDTI NeoDTI: Neural integration of neighbor information from a heterogeneous network for discovering new drug-target interactions (Bioinformatics).

62 Nov 26, 2022
social humanoid robots with GPGPU and IoT

Social humanoid robots with GPGPU and IoT Social humanoid robots with GPGPU and IoT Paper Authors Mohsen Jafarzadeh, Stephen Brooks, Shimeng Yu, Balak

0 Jan 07, 2022
Learning Saliency Propagation for Semi-supervised Instance Segmentation

Learning Saliency Propagation for Semi-supervised Instance Segmentation PyTorch Implementation This repository contains: the PyTorch implementation of

Berkeley DeepDrive 68 Oct 18, 2022
Home repository for the Regularized Greedy Forest (RGF) library. It includes original implementation from the paper and multithreaded one written in C++, along with various language-specific wrappers.

Regularized Greedy Forest Regularized Greedy Forest (RGF) is a tree ensemble machine learning method described in this paper. RGF can deliver better r

RGF-team 364 Dec 28, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022
Implementation of "Deep Implicit Templates for 3D Shape Representation"

Deep Implicit Templates for 3D Shape Representation Zerong Zheng, Tao Yu, Qionghai Dai, Yebin Liu. arXiv 2020. This repository is an implementation fo

Zerong Zheng 144 Dec 07, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
Learning multiple gaits of quadruped robot using hierarchical reinforcement learning

Learning multiple gaits of quadruped robot using hierarchical reinforcement learning We propose a method to learn multiple gaits of quadruped robot us

Yunho Kim 17 Dec 11, 2022
Extremely simple and fast extreme multi-class and multi-label classifiers.

napkinXC napkinXC is an extremely simple and fast library for extreme multi-class and multi-label classification, that focus of implementing various m

Marek Wydmuch 43 Nov 14, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22)

Near-Optimal Sparse Allreduce for Distributed Deep Learning (published in PPoPP'22) Ok-Topk is a scheme for distributed training with sparse gradients

Shigang Li 9 Oct 29, 2022
clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation

README clDice - a Novel Topology-Preserving Loss Function for Tubular Structure Segmentation CVPR 2021 Authors: Suprosanna Shit and Johannes C. Paetzo

110 Dec 29, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
Pytorch implementation of the paper Time-series Generative Adversarial Networks

TimeGAN-pytorch Pytorch implementation of the paper Time-series Generative Adversarial Networks presented at NeurIPS'19. Jinsung Yoon, Daniel Jarrett

Zhiwei ZHANG 21 Nov 24, 2022
(ICCV 2021 Oral) Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation.

DARS Code release for the paper "Re-distributing Biased Pseudo Labels for Semi-supervised Semantic Segmentation: A Baseline Investigation", ICCV 2021

CVMI Lab 58 Jan 01, 2023
Deployment of PyTorch chatbot with Flask

Chatbot Deployment with Flask and JavaScript In this tutorial we deploy the chatbot I created in this tutorial with Flask and JavaScript. This gives 2

Patrick Loeber (Python Engineer) 107 Dec 29, 2022