Official Implementation of SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations

Related tags

Deep LearningSimIPU
Overview

Official Implementation of SimIPU

  • SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for Spatial-Aware Visual Representations
  • Since the code is still waiting for release, if you have any question with reproduction, feel free to contact us. We will try our best to help you.
  • Currently, the core code of SimIPU is implemented in the commercial project. We are trying our best to make the code publicly available.
Comments
  • Question about augmentation

    Question about augmentation

    Hi, I'm a little confused about the data augmentation.

    1. How did you set img_aug when img_moco=True? It seems that we need an 'img_pipeline' in 'simipu_kitti.py', right?
    2. For 3D augmentation, it seems that it is done in this line. So the 3D augmentation is done based on the point features instead the raw points, right? If I want to try moco=True, how to set 3D augmentation? should I do this in the dataset building part? https://github.com/zhyever/SimIPU/blob/5b346e392c161a5e9fdde09b1692656bc7cd3faf/project_cl/decorator/inter_intro_decorator_moco_better.py#L394

    Looking forward to your reply. Many thanks.

    opened by sunnyHelen 2
  • error for env setup:ImportError: cannot import name 'ball_query_ext' from 'mmdet3d.ops.ball_query'

    error for env setup:ImportError: cannot import name 'ball_query_ext' from 'mmdet3d.ops.ball_query'

    Thanks for your insightful paper and clear code repo!

    Hi, I met with the ImportError: cannot import name 'ball_query_ext' from 'mmdet3d.ops.ball_query' when run the command bash tools/dist_train.sh project_cl/configs/simipu/simipu_kitti.py 1 --work_dir ./

    Do you know how to solve it?

    Traceback (most recent call last): File "tools/train.py", line 16, in from mmdet3d.apis import train_model File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/apis/init.py", line 1, in from .inference import (convert_SyncBN, inference_detector, File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/apis/inference.py", line 10, in from mmdet3d.core import (Box3DMode, DepthInstance3DBoxes, File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/init.py", line 2, in from .bbox import * # noqa: F401, F403 File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/init.py", line 4, in from .iou_calculators import (AxisAlignedBboxOverlaps3D, BboxOverlaps3D, File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/iou_calculators/init.py", line 1, in from .iou3d_calculator import (AxisAlignedBboxOverlaps3D, BboxOverlaps3D, File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/iou_calculators/iou3d_calculator.py", line 5, in from ..structures import get_box_type File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/structures/init.py", line 1, in from .base_box3d import BaseInstance3DBoxes File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/core/bbox/structures/base_box3d.py", line 5, in from mmdet3d.ops.iou3d import iou3d_cuda File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/ops/init.py", line 5, in from .ball_query import ball_query File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/ops/ball_query/init.py", line 1, in from .ball_query import ball_query File "/mnt/lustre/xxh/SimIPU-main/mmdet3d/ops/ball_query/ball_query.py", line 4, in from . import ball_query_ext ImportError: cannot import name 'ball_query_ext' from 'mmdet3d.ops.ball_query' (/mnt/lustre/xxh/SimIPU-main/mmdet3d/ops/ball_query/init.py)

    I noticed that you once met with the same error. https://github.com/open-mmlab/mmdetection3d/issues/503#issuecomment-847618114

    So, I would like to ask for your help~ Hopefully you have a good solution. :)

    opened by JerryX1110 2
  • A question about eq5 and eq6

    A question about eq5 and eq6

    Thanks for your inspiring work. I have some wonder about eq5 and eq6. As far as I know, After eq5, f should be a tensor which is a global feature with shape (batchsize * 2048 * 1 * 1), how can you sample corresponding image features by projection location? After all, there's no spatial information in f anymore. Or maybe you got features from a previous layer of ResNet? Looking forward to your reply.

    opened by lianchengmingjue 2
  • A question about Tab.5 in Ablation Study

    A question about Tab.5 in Ablation Study

    Thanks for your excellent work first! I have a question about Tab.5 in Ablation Study. Why "Scratch" equals "SimIPU w/o inter-module ", which means that the intra-module is useless?

    opened by Trent-tangtao 1
  • Have you tried not to crop gradient of f^{\alpha} in eq7?

    Have you tried not to crop gradient of f^{\alpha} in eq7?

    Hi, I like your good work! I am wondering have you tried not to crop the gradient of $f^{\alpha}$ in eq7? If you crop the gradient, it seems like the pertaining of the point branch cannot learn anything from the image branch.

    opened by Hiusam 1
  • issues about create_data

    issues about create_data

    Hi, thanks for sharing your great work. I encounter some issues during creating data by running create_data.py First create reduced point cloud for training set [ ] 0/3712, elapsed: 0s, ETA:Traceback (most recent call last): File "tools/create_data.py", line 247, in
    out_dir=args.out_dir)
    File "tools/create_data.py", line 24, in kitti_data_prep
    kitti.create_reduced_point_cloud(root_path, info_prefix)
    File "/mnt/lustre/chenzhuo1/hzha/SimIPU/tools/data_converter/kitti_converter.py", line 374, in create_reduced_point_cloud
    _create_reduced_point_cloud(data_path, train_info_path, save_path)
    File "/mnt/lustre/chenzhuo1/hzha/SimIPU/tools/data_converter/kitti_converter.py", line 314, in _create_reduced_point_cloud
    count=-1).reshape([-1, num_features])
    ValueError: cannot reshape array of size 461536 into shape (6)

    It seems to set the num_features=4 and front_camera_id=2? in this line: https://github.com/zhyever/SimIPU/blob/5b346e392c161a5e9fdde09b1692656bc7cd3faf/tools/data_converter/kitti_converter.py#L291

    I assume doing this can solve the problem but encounter another problem when Create GT Database of KittiDataset
    [ ] 0/3712, elapsed: 0s, ETA:Traceback (most recent call last):
    File "tools/create_data.py", line 247, in
    out_dir=args.out_dir)
    File "tools/create_data.py", line 44, in kitti_data_prep
    with_bbox=True) # for moca
    File "/mnt/lustre/chenzhuo1/hzha/SimIPU/tools/data_converter/create_gt_database.py", line 275, in create_groundtruth_database
    P0 = np.array(example['P0']).reshape(4, 4)
    KeyError: 'P0'

    Can you help me figure out how to solve these issues?

    opened by sunnyHelen 21
Owner
Zhyever
Keep going.
Zhyever
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
Definition of a business problem according to Wilson Lower Bound Score and Time Based Average Rating

Wilson Lower Bound Score, Time Based Rating Average In this study I tried to calculate the product rating and sorting reviews more accurately. I have

3 Sep 30, 2021
PPO is a very popular Reinforcement Learning algorithm at present.

PPO is a very popular Reinforcement Learning algorithm at present. OpenAI takes PPO as the current baseline algorithm. We use the PPO algorithm to train a policy to give the best action in any situat

Rosefintech 11 Aug 23, 2021
MEDS: Enhancing Memory Error Detection for Large-Scale Applications

MEDS: Enhancing Memory Error Detection for Large-Scale Applications Prerequisites cmake and clang Build MEDS supporting compiler $ make Build Using Do

Secomp Lab at Purdue University 34 Dec 14, 2022
Data and extra materials for the food safety publications classifier

Data and extra materials for the food safety publications classifier The subdirectories contain detailed descriptions of their contents in the README.

1 Jan 20, 2022
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
Code repo for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper.

InterpretableMDE A PyTorch implementation for "Towards Interpretable Deep Networks for Monocular Depth Estimation" paper. arXiv link: https://arxiv.or

Zunzhi You 16 Aug 12, 2022
Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks"

HKD Code for ICCV 2021 paper "Distilling Holistic Knowledge with Graph Neural Networks" cifia-100 result The implementation of compared methods are ba

Wang Yucheng 30 Dec 18, 2022
Code for NeurIPS 2021 paper 'Spatio-Temporal Variational Gaussian Processes'

Spatio-Temporal Variational GPs This repository is the official implementation of the methods in the publication: O. Hamelijnck, W.J. Wilkinson, N.A.

AaltoML 26 Sep 16, 2022
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
End-to-End Referring Video Object Segmentation with Multimodal Transformers

End-to-End Referring Video Object Segmentation with Multimodal Transformers This repo contains the official implementation of the paper: End-to-End Re

608 Dec 30, 2022
Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019) We propose Disentangled Audio-Visual System (DAVS) to ad

Hang_Zhou 750 Dec 23, 2022
The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

9 Nov 14, 2022
A selection of State Of The Art research papers (and code) on human locomotion (pose + trajectory) prediction (forecasting)

A selection of State Of The Art research papers (and code) on human trajectory prediction (forecasting). Papers marked with [W] are workshop papers.

Karttikeya Manglam 40 Nov 18, 2022
Graduation Project

Gesture-Detection-and-Depth-Estimation This is my graduation project. (1) In this project, I use the YOLOv3 object detection model to detect gesture i

ChaosAT 1 Nov 23, 2021
Convert dog pictures into various painting styles. Try LimnPet

LimnPet Cartoon stylization service project Try our service » Home page · Team notion · Members 목차 프로젝트 소개 프로젝트 목표 사용한 기술스택과 수행도구 팀원 구현 기능 주요 기능 추가 기능

LiJell 7 Jul 14, 2022
Block-wisely Supervised Neural Architecture Search with Knowledge Distillation (CVPR 2020)

DNA This repository provides the code of our paper: Blockwisely Supervised Neural Architecture Search with Knowledge Distillation. Illustration of DNA

Changlin Li 215 Dec 19, 2022
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022