GPU Accelerated Non-rigid ICP for surface registration

Overview

GPU Accelerated Non-rigid ICP for surface registration

Introduction

Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve sparse least square problem, which is time consuming. In this repo, we implement a pytorch version NICP algorithm based on paper Amberg et al. Detailedly, we leverage the AMSGrad to optimize the linear regresssion, and then found nearest points iteratively. Additionally, we smooth the calculated mesh with laplacian smoothness term. With laplacian smoothness term, the wireframe is also more neat.


Quick Start

install

We use python3.8 and cuda10.2 for implementation. The code is tested on Ubuntu 20.04.

  • The pytorch3d cannot be installed directly from pip install pytorch3d, for the installation of pytorch3d, see pytorch3d.
  • For other packages, run
pip install -r requirements.txt
  • For the template face model, currently we use a processed version of BFM face model from 3DMMfitting-pytorch, download the BFM09_model_info.mat from 3DMMfitting-pytorch and put it into the ./BFM folder.
  • For demo, run
python demo_nicp.py

we show demo for NICP mesh2mesh and NICP mesh2pointcloud. We have two param sets for registration:

milestones = set([50, 80, 100, 110, 120, 130, 140])
stiffness_weights = np.array([50, 20, 5, 2, 0.8, 0.5, 0.35, 0.2])
landmark_weights = np.array([5, 2, 0.5, 0, 0, 0, 0, 0])

This param set is used for registration on fine grained mesh

milestones = set([50, 100])
stiffness_weights = np.array([50, 20, 5])
landmark_weights = np.array([50, 20, 5])

This param set is used for registration on noisy point clouds

Templated Model

You can also use your own templated face model with manually specified landmarks.

Todo

Currently we write some batchwise functions, but batchwise NICP is not supported now. We will support batch NICP in further releases.

You might also like...
High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

A non-linear, non-parametric Machine Learning method capable of modeling complex datasets
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

Code for
Code for "Learning to Segment Rigid Motions from Two Frames".

rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.

Weakly Supervised Learning of Rigid 3D Scene Flow
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds
Official PyTorch implementation of CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds

CAPTRA: CAtegory-level Pose Tracking for Rigid and Articulated Objects from Point Clouds Introduction This is the official PyTorch implementation of o

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these environments (PPO, SAC, evolutionary strategy, and direct trajectory optimization are implemented).

Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..
Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators..

ARAPReg Code for ICCV 2021 paper: ARAPReg: An As-Rigid-As Possible Regularization Loss for Learning Deformable Shape Generators.. Installation The cod

Comments
  • Lack of file “BFM09_model_info.mat”

    Lack of file “BFM09_model_info.mat”

    Traceback (most recent call last): File "demo_nicp.py", line 28, in bfm_meshes, bfm_lm_index = load_bfm_model(torch.device('cuda:0')) File "/data/pytorch-nicp/bfm_model.py", line 15, in load_bfm_model bfm_meta_data = loadmat('BFM/BFM09_model_info.mat') File "/root/anaconda3/envs/pytorch3d/lib/python3.8/site-packages/scipy/io/matlab/mio.py", line 224, in loadmat with _open_file_context(file_name, appendmat) as f: File "/root/anaconda3/envs/pytorch3d/lib/python3.8/contextlib.py", line 113, in enter return next(self.gen) File "/root/anaconda3/envs/pytorch3d/lib/python3.8/site-packages/scipy/io/matlab/mio.py", line 17, in _open_file_context f, opened = _open_file(file_like, appendmat, mode) File "/root/anaconda3/envs/pytorch3d/lib/python3.8/site-packages/scipy/io/matlab/mio.py", line 45, in _open_file return open(file_like, mode), True FileNotFoundError: [Errno 2] No such file or directory: 'BFM/BFM09_model_info.mat'

    In 3DMMfitting-pytorch, there are only these files: BFM_exp_idx.mat BFM_front_idx.mat facemodel_info.mat README.md select_vertex_id.mat similarity_Lm3D_all.mat std_exp.txt

    opened by 675492062 2
  • What is the expected time needed for running demo_nicp.py?

    What is the expected time needed for running demo_nicp.py?

    Hello,

    On my computer it seems quite slow to run demo_nicp.py. At least it took more than 1 minutes to get final.obj. Is it correct?

    I ranAMM_NRR for non-rigit ICP registration with two 7000 vertices meshes. It needs ca 1 second with CPU on my computer. With GPU, it might be possible to do the same work in less than 100 ms?

    Thank you!

    opened by 1939938853 0
  • Hi, with landmarks: `landmarks = torch.from_numpy(np.array(landmarks)).to(device).long()`, maybe you can  reshape landmarks from torch.Size([1, 1, 68, 2]) to  torch.Size([1, 68, 2])

    Hi, with landmarks: `landmarks = torch.from_numpy(np.array(landmarks)).to(device).long()`, maybe you can reshape landmarks from torch.Size([1, 1, 68, 2]) to torch.Size([1, 68, 2])

    Hi, with landmarks: landmarks = torch.from_numpy(np.array(landmarks)).to(device).long(), maybe you can reshape landmarks from torch.Size([1, 1, 68, 2]) to torch.Size([1, 68, 2])

    Originally posted by @wuhaozhe in https://github.com/wuhaozhe/pytorch-nicp/issues/3#issuecomment-971453681 hi!I got output as torch.Size([1, 68, 512, 3]) torch.Size([1, 68, 2]) torch.Size([1, 512, 512, 3]) I think the shape of following tensors are right, but I meet the same problem. lm_vertex = torch.gather(lm_vertex, 2, column_index) RuntimeError: CUDA error: device-side assert triggered

    landmarks = torch.from_numpy(np.array(landmarks)).to(device).long()
    
    row_index = landmarks[:, :, 1].view(landmarks.shape[0], -1)
    column_index = landmarks[:, :, 0].view(landmarks.shape[0], -1)
    row_index = row_index.unsqueeze(2).unsqueeze(3).expand(landmarks.shape[0], landmarks.shape[1], shape_img.shape[2], shape_img.shape[3])
    column_index = column_index.unsqueeze(1).unsqueeze(3).expand(landmarks.shape[0], landmarks.shape[1], landmarks.shape[1], shape_img.shape[3])
    print(row_index.shape, landmarks.shape, shape_img.shape)
    
    opened by alicedingyueming 1
  • RuntimeError

    RuntimeError

    Traceback (most recent call last): File "demo_nicp.py", line 27, in target_lm_index, lm_mask = get_mesh_landmark(norm_meshes, dummy_render) File "/data/pytorch-nicp/landmark.py", line 37, in get_mesh_landmark row_index = row_index.unsqueeze(2).unsqueeze(3).expand(landmarks.shape[0], landmarks.shape[1], shape_img.shape[2], shape_img.shape[3]) RuntimeError: The expanded size of the tensor (1) must match the existing size (2) at non-singleton dimension 1. Target sizes: [1, 1, 512, 3]. Tensor sizes: [1, 2, 1, 1]

    I have already configure the environment,but it seems have some problems in the code.What can I do to solve this problem.

    opened by 675492062 8
Releases(v0.1)
Owner
Haozhe Wu
Research interests in Computer Vision and Machine Learning.
Haozhe Wu
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
This repository contains the code and models necessary to replicate the results of paper: How to Robustify Black-Box ML Models? A Zeroth-Order Optimization Perspective

Black-Box-Defense This repository contains the code and models necessary to replicate the results of our recent paper: How to Robustify Black-Box ML M

OPTML Group 2 Oct 05, 2022
AFLNet: A Greybox Fuzzer for Network Protocols

AFLNet: A Greybox Fuzzer for Network Protocols AFLNet is a greybox fuzzer for protocol implementations. Unlike existing protocol fuzzers, it takes a m

626 Jan 06, 2023
GARCH and Multivariate LSTM forecasting models for Bitcoin realized volatility with potential applications in crypto options trading, hedging, portfolio management, and risk management

Bitcoin Realized Volatility Forecasting with GARCH and Multivariate LSTM Author: Chi Bui This Repository Repository Directory ├── README.md

Chi Bui 113 Dec 29, 2022
Apply our monocular depth boosting to your own network!

MergeNet - Boost Your Own Depth Boost custom or edited monocular depth maps using MergeNet Input Original result After manual editing of base You can

Computational Photography Lab @ SFU 142 Dec 17, 2022
Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz).

Blender-Cave-Generation Cave Generation using metaballs in Blender. Originally created by sdfgeoff, Edited by Myself (Archie Jaskowicz). Installation

2 Dec 28, 2022
ECCV2020 paper: Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code and Data.

This repo contains some of the codes for the following paper Fashion Captioning: Towards Generating Accurate Descriptions with Semantic Rewards. Code

Xuewen Yang 56 Dec 08, 2022
Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR)

Personalized Transfer of User Preferences for Cross-domain Recommendation (PTUPCDR) This is the official implementation of our paper Personalized Tran

Yongchun Zhu 81 Dec 29, 2022
Library for implementing reservoir computing models (echo state networks) for multivariate time series classification and clustering.

Framework overview This library allows to quickly implement different architectures based on Reservoir Computing (the family of approaches popularized

Filippo Bianchi 249 Dec 21, 2022
Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer.

DocEnTR Description Pytorch implementation of the paper DocEnTr: An End-to-End Document Image Enhancement Transformer. This model is implemented on to

Mohamed Ali Souibgui 74 Jan 07, 2023
TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

TensorFlow Ranking is a library for Learning-to-Rank (LTR) techniques on the TensorFlow platform

2.6k Jan 04, 2023
MazeRL is an application oriented Deep Reinforcement Learning (RL) framework

MazeRL is an application oriented Deep Reinforcement Learning (RL) framework, addressing real-world decision problems. Our vision is to cover the complete development life cycle of RL applications ra

EnliteAI GmbH 222 Dec 24, 2022
Neural network for stock price prediction

neural_network_for_stock_price_prediction Neural networks for stock price predic

2 Feb 04, 2022
Using python and scikit-learn to make stock predictions

MachineLearningStocks in python: a starter project and guide EDIT as of Feb 2021: MachineLearningStocks is no longer actively maintained MachineLearni

Robert Martin 1.3k Dec 29, 2022
Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always

Rony Abecidan 77 Dec 16, 2022
CVPR 2021 - Official code repository for the paper: On Self-Contact and Human Pose.

SMPLify-XMC This repo is part of our project: On Self-Contact and Human Pose. [Project Page] [Paper] [MPI Project Page] License Software Copyright Lic

Lea Müller 83 Dec 14, 2022
This is an official implementation for "Self-Supervised Learning with Swin Transformers".

Self-Supervised Learning with Vision Transformers By Zhenda Xie*, Yutong Lin*, Zhuliang Yao, Zheng Zhang, Qi Dai, Yue Cao and Han Hu This repo is the

Swin Transformer 529 Jan 02, 2023
Official PyTorch Implementation for InfoSwap: Information Bottleneck Disentanglement for Identity Swapping

InfoSwap: Information Bottleneck Disentanglement for Identity Swapping Code usage Please check out the user manual page. Paper Gege Gao, Huaibo Huang,

Grace Hešeri 56 Dec 20, 2022