Implementation of the master's thesis "Temporal copying and local hallucination for video inpainting".

Overview

Temporal copying and local hallucination for video inpainting

This repository contains the implementation of my master's thesis "Temporal copying and local hallucination for video inpainting". The code has been built using PyTorch Lightning, read its documentation to get a complete overview of how this repository is structured.

Disclaimer: The version published here might contain small differences with the thesis because of the refactoring.

About the data

The thesis uses three different datasets: GOT-10k for the background sequences, YouTube-VOS for realistic mask shapes and DAVIS to test the models with real masked sequences. Some pre-processing steps, which are not published in this repository, have been applied to the data. You can download the exact datasets used in the paper from this link.

The first step is to clone this repository, install its dependencies and other required system packages:

git clone https://github.com/davidalvarezdlt/master_thesis.git
cd master_thesis
pip install -r requirements.txt

apt-get update
apt-get install libturbojpeg ffmpeg libsm6 libxext6

Unzip the file downloaded from the previous link inside ./data. The resulting folder structure should look like this:

master_thesis/
    data/
        DAVIS-2017/
        GOT10k/
        YouTubeVOS/
    lightning_logs/
    master_thesis/
    .gitignore
    .pre-commit-config.yaml
    LICENSE
    README.md
    requirements.txt

Training the Dense Flow Prediction Network (DFPN) model

In short, you can train the model by calling:

python -m master_thesis

You can modify the default parameters of the code by using CLI parameters. Get a complete list of the available parameters by calling:

python -m master_thesis --help

For instance, if we want to train the model using 2 frames, with a batch size of 8 and using one GPUs, we would call:

python -m master_thesis --frames_n 2 --batch_size 8 --gpus 1

Every time you train the model, a new folder inside ./lightning_logs will be created. Each folder represents a different version of the model, containing its checkpoints and auxiliary files.

Training the Copy-and-Hallucinate Network (CHN) model

In this case, you will need to specify that you want to train the CHN model. To do so:

python -m master_thesis --chn --chn_aligner <chn_aligner> --chn_aligner_checkpoint <chn_aligner_checkpoint>

Where --chn_aligner is the model used to align the frames (either cpn or dfpn) and --chn_aligner_checkpoint is the path to its checkpoint.

You can download the checkpoint of the CPN from its original repository (file named weight.pth).

Testing the Dense Flow Prediction Network (DFPN) model

You can align samples from the test split and store them in TensorBoard by calling:

python -m samplernn_pase --test --test_checkpoint <test_checkpoint>

Where --test_checkpoint is a valid path to the model checkpoint that should be used.

Testing the Copy-and-Hallucinate Network (CHN) model

You can inpaint test sequences (they will be stored in a folder) using the three algorithms by calling:

python -m master_thesis --chn --chn_aligner <chn_aligner> --chn_aligner_checkpoint <chn_aligner_checkpoint> --test --test_checkpoint <test_checkpoint>

Notice that now the value of --test_checkpoint must be a valid path to a CHN checkpoint, while --chn_aligner_checkpoint might be the path to a checkpoint of either CPN or DFPN.

Citation

If you find this thesis useful, please use the following citation:

@thesis{Alvarez2020,
    type = {Master's Thesis},
    author = {David Álvarez de la Torre},
    title = {Temporal copying and local hallucination for video onpainting},
    school = {ETH Zürich},
    year = 2020,
}
Owner
David Álvarez de la Torre
Founder of @lemonplot. Alumni of UPC and ETH.
David Álvarez de la Torre
Robustness between the worst and average case

Robustness between the worst and average case A repository that implements intermediate robustness training and evaluation from the NeurIPS 2021 paper

CMU Locus Lab 16 Dec 02, 2022
Official code for "Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes", CVPR2022

[CVPR 2022] Eigenlanes: Data-Driven Lane Descriptors for Structurally Diverse Lanes Dongkwon Jin, Wonhui Park, Seong-Gyun Jeong, Heeyeon Kwon, and Cha

Dongkwon Jin 106 Dec 29, 2022
PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi

PIKA: a lightweight speech processing toolkit based on Pytorch and (Py)Kaldi PIKA is a lightweight speech processing toolkit based on Pytorch and (Py)

336 Nov 25, 2022
Estimation of human density in a closed space using deep learning.

Siemens HOLLZOF challenge - Human Density Estimation Add project description here. Installing Dependencies: Install Python3 either system-wide, user-w

3 Aug 08, 2021
Pytorch implementation of MaskFlownet

MaskFlownet-Pytorch Unofficial PyTorch implementation of MaskFlownet (https://github.com/microsoft/MaskFlownet). Tested with: PyTorch 1.5.0 CUDA 10.1

Daniele Cattaneo 84 Nov 02, 2022
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
An Unsupervised Graph-based Toolbox for Fraud Detection

An Unsupervised Graph-based Toolbox for Fraud Detection Introduction: UGFraud is an unsupervised graph-based fraud detection toolbox that integrates s

SafeGraph 99 Dec 11, 2022
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022
Custom studies about block sparse attention.

Block Sparse Attention 研究总结 本人近半年来对Block Sparse Attention(块稀疏注意力)的研究总结(持续更新中)。按时间顺序,主要分为如下三部分: PyTorch 自定义 CUDA 算子——以矩阵乘法为例 基于 Triton 的 Block Sparse A

Chen Kai 2 Jan 09, 2022
The Official Repository for "Generalized OOD Detection: A Survey"

Generalized Out-of-Distribution Detection: A Survey 1. Overview This repository is with our survey paper: Title: Generalized Out-of-Distribution Detec

Jingkang Yang 338 Jan 03, 2023
Noether Networks: meta-learning useful conserved quantities

Noether Networks: meta-learning useful conserved quantities This repository contains the code necessary to reproduce experiments from "Noether Network

Dylan Doblar 33 Nov 23, 2022
GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms

GRaNDPapA: Generator of Rad Names from Decent Paper Acronyms Trying to publish a new machine learning model and can't write a decent title for your pa

264 Nov 08, 2022
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
Hierarchical User Intent Graph Network for Multimedia Recommendation

Hierarchical User Intent Graph Network for Multimedia Recommendation This is our Pytorch implementation for the paper: Hierarchical User Intent Graph

6 Jan 05, 2023
System-oriented IR evaluations are limited to rather abstract understandings of real user behavior

Validating Simulations of User Query Variants This repository contains the scripts of the experiments and evaluations, simulated queries, as well as t

IR Group at Technische Hochschule Köln 2 Nov 23, 2022
FasterAI: A library to make smaller and faster models with FastAI.

Fasterai fasterai is a library created to make neural network smaller and faster. It essentially relies on common compression techniques for networks

Nathan Hubens 193 Jan 01, 2023
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training

SelfText Beyond Polygon: Unconstrained Text Detection with Box Supervisionand Dynamic Self-Training Introduction This is a PyTorch implementation of "

weijiawu 34 Nov 09, 2022