ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

Related tags

Deep Learningtent
Overview

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization

This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Minimization by Dequan Wang*, Evan Shelhamer*, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell (ICLR 2021, spotlight).

⛺️ Tent equips a model to adapt itself to new and different data during testing ☀️ 🌧 ❄️ . Tented models adapt online and batch-by-batch to reduce error on dataset shifts like corruptions, simulation-to-real discrepancies, and other differences between training and testing data. This kind of adaptation is effective and efficient: tent makes just one update per batch to not interrupt inference.

We provide example code in PyTorch to illustrate the tent method and fully test-time adaptation setting.

Please check back soon for reference code to exactly reproduce the ImageNet-C results in the paper.

Installation:

pip install -r requirements.txt

tent depends on

and the example depends on

  • RobustBench v0.1 for the dataset and pre-trained model
  • yacs for experiment configuration

but feel free to try your own data and model too!

Usage:

import tent

model = TODO_model()

model = tent.configure_model(model)
params, param_names = tent.collect_params(model)
optimizer = TODO_optimizer(params, lr=1e-3)
tented_model = tent.Tent(model, optimizer)

outputs = tented_model(inputs)  # now it infers and adapts!

Example: Adapting to Image Corruptions on CIFAR-10-C

The example adapts a CIFAR-10 classifier to image corruptions on CIFAR-10-C. The purpose of the example is explanation, not reproduction: exact details of the model architecture, optimization settings, etc. may differ from the paper. That said, the results should be representative, so do give it a try and experiment!

This example compares a baseline without adaptation (source), test-time normalization for updating feature statistics during testing (norm), and our method for entropy minimization during testing (tent). The dataset is CIFAR-10-C, with 15 types and 5 levels of corruption. The model is WRN-28-10, which is the default model for RobustBench.

Usage:

python cifar10c.py --cfg cfgs/source.yaml
python cifar10c.py --cfg cfgs/norm.yaml
python cifar10c.py --cfg cfgs/tent.yaml

Result: tent reduces the error (%) across corruption types at the most severe level of corruption (level 5).

mean gauss_noise shot_noise impulse_noise defocus_blur glass_blur motion_blur zoom_blur snow frost fog brightness contrast elastic_trans pixelate jpeg
source code config 43.5 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3
norm code config 20.4 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3
tent code config 18.6 24.8 23.5 33.0 12.0 31.8 13.7 10.8 15.9 16.2 13.7 7.9 12.1 22.0 17.3 24.2

See the full results for this example in the wandb report.

Correspondence

Please contact Dequan Wang and Evan Shelhamer at dqwang AT cs.berkeley.edu and shelhamer AT google.com.

Citation

If the tent method or fully test-time adaptation setting are helpful in your research, please consider citing our paper:

@inproceedings{wang2021tent,
  title={Tent: Fully Test-Time Adaptation by Entropy Minimization},
  author={Wang, Dequan and Shelhamer, Evan and Liu, Shaoteng and Olshausen, Bruno and Darrell, Trevor},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=uXl3bZLkr3c}
}
Owner
Dequan Wang
CS Ph.D. Student at UC Berkeley
Dequan Wang
This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021.

MCGC Description This is the code of "Multi-view Contrastive Graph Clustering" in NeurlPS 2021. Datasets Results ACM DBLP IMDB Amazon photos Amazon co

31 Nov 14, 2022
The source code for the Cutoff data augmentation approach proposed in this paper: "A Simple but Tough-to-Beat Data Augmentation Approach for Natural Language Understanding and Generation".

Cutoff: A Simple Data Augmentation Approach for Natural Language This repository contains source code necessary to reproduce the results presented in

Dinghan Shen 49 Dec 22, 2022
Fast and customizable reconnaissance workflow tool based on simple YAML based DSL.

Fast and customizable reconnaissance workflow tool based on simple YAML based DSL, with support of notifications and distributed workload of that work

Américo Júnior 3 Mar 11, 2022
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
PIXIE: Collaborative Regression of Expressive Bodies

PIXIE: Collaborative Regression of Expressive Bodies [Project Page] This is the official Pytorch implementation of PIXIE. PIXIE reconstructs an expres

Yao Feng 331 Jan 04, 2023
High-Resolution Image Synthesis with Latent Diffusion Models

Latent Diffusion Models Requirements A suitable conda environment named ldm can be created and activated with: conda env create -f environment.yaml co

CompVis Heidelberg 5.6k Jan 04, 2023
Code for "R-GCN: The R Could Stand for Random"

RR-GCN: Random Relational Graph Convolutional Networks PyTorch Geometric code for the paper "R-GCN: The R Could Stand for Random" RR-GCN is an extensi

PreDiCT.IDLab 31 Sep 07, 2022
(CVPR 2021) Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds

BRNet Introduction This is a release of the code of our paper Back-tracing Representative Points for Voting-based 3D Object Detection in Point Clouds,

86 Oct 05, 2022
Automatic 2D-to-3D Video Conversion with CNNs

Deep3D: Automatic 2D-to-3D Video Conversion with CNNs How To Run To run this code. Please install MXNet following the official document. Deep3D requir

Eric Junyuan Xie 1.2k Dec 30, 2022
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
Back to the Feature: Learning Robust Camera Localization from Pixels to Pose (CVPR 2021)

Back to the Feature with PixLoc We introduce PixLoc, a neural network for end-to-end learning of camera localization from an image and a 3D model via

Computer Vision and Geometry Lab 610 Jan 05, 2023
Hyperbolic Image Segmentation, CVPR 2022

Hyperbolic Image Segmentation, CVPR 2022 This is the implementation of paper Hyperbolic Image Segmentation (CVPR 2022). Repository structure assets :

Mina Ghadimi Atigh 46 Dec 29, 2022
SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks (Scientific Reports)

SkipGNN: Predicting Molecular Interactions with Skip-Graph Networks Molecular interaction networks are powerful resources for the discovery. While dee

Kexin Huang 49 Oct 15, 2022
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022
ROS-UGV-Control-Interface - Control interface which can be used in any UGV

ROS-UGV-Control-Interface Cam Closed: Cam Opened:

Ahmet Fatih Akcan 1 Nov 04, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
FedML: A Research Library and Benchmark for Federated Machine Learning

FedML: A Research Library and Benchmark for Federated Machine Learning 📄 https://arxiv.org/abs/2007.13518 News 2021-02-01 (Award): #NeurIPS 2020# Fed

FedML-AI 2.3k Jan 08, 2023
Official release of MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis of Pancreatic Cancer axriv: http://arxiv.org/abs/2112.13513

MSHT: Multi-stage Hybrid Transformer for the ROSE Image Analysis This is the official page of the MSHT with its experimental script and records. We de

Tianyi Zhang 53 Dec 27, 2022
Autonomous Robots Kalman Filters

Autonomous Robots Kalman Filters The Kalman Filter is an easy topic. However, ma

20 Jul 18, 2022
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022