ICLR21 Tent: Fully Test-Time Adaptation by Entropy Minimization

Related tags

Deep Learningtent
Overview

⛺️ Tent: Fully Test-Time Adaptation by Entropy Minimization

This is the official project repository for Tent: Fully-Test Time Adaptation by Entropy Minimization by Dequan Wang*, Evan Shelhamer*, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell (ICLR 2021, spotlight).

⛺️ Tent equips a model to adapt itself to new and different data during testing ☀️ 🌧 ❄️ . Tented models adapt online and batch-by-batch to reduce error on dataset shifts like corruptions, simulation-to-real discrepancies, and other differences between training and testing data. This kind of adaptation is effective and efficient: tent makes just one update per batch to not interrupt inference.

We provide example code in PyTorch to illustrate the tent method and fully test-time adaptation setting.

Please check back soon for reference code to exactly reproduce the ImageNet-C results in the paper.

Installation:

pip install -r requirements.txt

tent depends on

and the example depends on

  • RobustBench v0.1 for the dataset and pre-trained model
  • yacs for experiment configuration

but feel free to try your own data and model too!

Usage:

import tent

model = TODO_model()

model = tent.configure_model(model)
params, param_names = tent.collect_params(model)
optimizer = TODO_optimizer(params, lr=1e-3)
tented_model = tent.Tent(model, optimizer)

outputs = tented_model(inputs)  # now it infers and adapts!

Example: Adapting to Image Corruptions on CIFAR-10-C

The example adapts a CIFAR-10 classifier to image corruptions on CIFAR-10-C. The purpose of the example is explanation, not reproduction: exact details of the model architecture, optimization settings, etc. may differ from the paper. That said, the results should be representative, so do give it a try and experiment!

This example compares a baseline without adaptation (source), test-time normalization for updating feature statistics during testing (norm), and our method for entropy minimization during testing (tent). The dataset is CIFAR-10-C, with 15 types and 5 levels of corruption. The model is WRN-28-10, which is the default model for RobustBench.

Usage:

python cifar10c.py --cfg cfgs/source.yaml
python cifar10c.py --cfg cfgs/norm.yaml
python cifar10c.py --cfg cfgs/tent.yaml

Result: tent reduces the error (%) across corruption types at the most severe level of corruption (level 5).

mean gauss_noise shot_noise impulse_noise defocus_blur glass_blur motion_blur zoom_blur snow frost fog brightness contrast elastic_trans pixelate jpeg
source code config 43.5 72.3 65.7 72.9 46.9 54.3 34.8 42.0 25.1 41.3 26.0 9.3 46.7 26.6 58.5 30.3
norm code config 20.4 28.1 26.1 36.3 12.8 35.3 14.2 12.1 17.3 17.4 15.3 8.4 12.6 23.8 19.7 27.3
tent code config 18.6 24.8 23.5 33.0 12.0 31.8 13.7 10.8 15.9 16.2 13.7 7.9 12.1 22.0 17.3 24.2

See the full results for this example in the wandb report.

Correspondence

Please contact Dequan Wang and Evan Shelhamer at dqwang AT cs.berkeley.edu and shelhamer AT google.com.

Citation

If the tent method or fully test-time adaptation setting are helpful in your research, please consider citing our paper:

@inproceedings{wang2021tent,
  title={Tent: Fully Test-Time Adaptation by Entropy Minimization},
  author={Wang, Dequan and Shelhamer, Evan and Liu, Shaoteng and Olshausen, Bruno and Darrell, Trevor},
  booktitle={International Conference on Learning Representations},
  year={2021},
  url={https://openreview.net/forum?id=uXl3bZLkr3c}
}
Owner
Dequan Wang
CS Ph.D. Student at UC Berkeley
Dequan Wang
[arXiv'22] Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation

Panoptic NeRF Project Page | Paper | Dataset Panoptic NeRF: 3D-to-2D Label Transfer for Panoptic Urban Scene Segmentation Xiao Fu*, Shangzhan zhang*,

Xiao Fu 111 Dec 16, 2022
MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images

Main repo for ECCV 2020 paper MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. visual.cs.brown.edu/matryodshka

Brown University Visual Computing Group 75 Dec 13, 2022
Study of human inductive biases in CNNs and Transformers.

Are Convolutional Neural Networks or Transformers more like human vision? This repository contains the code and fine-tuned models of popular Convoluti

Shikhar Tuli 39 Dec 08, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Vision Longformer This project provides the source code for the vision longformer paper. Multi-Scale Vision Longformer: A New Vision Transformer for H

Microsoft 209 Dec 30, 2022
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022
🚀 PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)"

PyTorch Implementation of "Progressive Distillation for Fast Sampling of Diffusion Models(v-diffusion)" Unofficial PyTorch Implementation of Progressi

Vitaliy Hramchenko 58 Dec 19, 2022
ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral)

ILVR + ADM This is the implementation of ILVR: Conditioning Method for Denoising Diffusion Probabilistic Models (ICCV 2021 Oral). This repository is h

Jooyoung Choi 225 Dec 28, 2022
Testbed of AI Systems Quality Management

qunomon Description A testbed for testing and managing AI system qualities. Demo Sorry. Not deployment public server at alpha version. Requirement Ins

AIST AIRC 15 Nov 27, 2021
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022
Robotics with GPU computing

Robotics with GPU computing Cupoch is a library that implements rapid 3D data processing for robotics using CUDA. The goal of this library is to imple

Shirokuma 625 Jan 07, 2023
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
License Plate Detection Application

LicensePlate_Project 🚗 🚙 [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. 데이터 수집 및 라벨링 차량 번호판 이미지를 직접 수집하여 각 이미지에 대해 '번호판

4 Oct 10, 2022
Implementation of Diverse Semantic Image Synthesis via Probability Distribution Modeling

Diverse Semantic Image Synthesis via Probability Distribution Modeling (CVPR 2021) Paper Zhentao Tan, Menglei Chai, Dongdong Chen, Jing Liao, Qi Chu,

tzt 45 Nov 17, 2022
DC3: A Learning Method for Optimization with Hard Constraints

DC3: A learning method for optimization with hard constraints This repository is by Priya L. Donti, David Rolnick, and J. Zico Kolter and contains the

CMU Locus Lab 57 Dec 26, 2022
An implementation for the ICCV 2021 paper Deep Permutation Equivariant Structure from Motion.

Deep Permutation Equivariant Structure from Motion Paper | Poster This repository contains an implementation for the ICCV 2021 paper Deep Permutation

72 Dec 27, 2022
A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API

Timbre Dissimilarity Metrics A collection of metrics for evaluating timbre dissimilarity using the TorchMetrics API Installation pip install -e . Usag

Ben Hayes 21 Jan 05, 2022
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

1 Dec 17, 2021
Kaggle competition: Springleaf Marketing Response

PruebaEnel Prueba Kaggle-Springleaf-master Prueba Kaggle-Springleaf Kaggle competition: Springleaf Marketing Response Competencia de Kaggle: Marketing

1 Feb 09, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022