IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID,

Related tags

Deep LearningIDM
Overview

Python >=3.7 PyTorch >=1.1

Intermediate Domain Module (IDM)

This repository is the official implementation for IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID, which is accepted by ICCV 2021 (Oral).

IDM achieves state-of-the-art performances on the unsupervised domain adaptation task for person re-ID.

Requirements

Installation

git clone https://github.com/SikaStar/IDM.git
cd IDM/idm/evaluation_metrics/rank_cylib && make all

Prepare Datasets

cd examples && mkdir data

Download the person re-ID datasets Market-1501, DukeMTMC-ReID, MSMT17, PersonX, and UnrealPerson. Then unzip them under the directory like

IDM/examples/data
├── dukemtmc
│   └── DukeMTMC-reID
├── market1501
│   └── Market-1501-v15.09.15
├── msmt17
│   └── MSMT17_V1
├── personx
│   └── PersonX
└── unreal
    ├── list_unreal_train.txt
    └── unreal_vX.Y

Prepare ImageNet Pre-trained Models for IBN-Net

When training with the backbone of IBN-ResNet, you need to download the ImageNet-pretrained model from this link and save it under the path of logs/pretrained/.

mkdir logs && cd logs
mkdir pretrained

The file tree should be

IDM/logs
└── pretrained
    └── resnet50_ibn_a.pth.tar

ImageNet-pretrained models for ResNet-50 will be automatically downloaded in the python script.

Training

We utilize 4 GTX-2080TI GPUs for training. Note that

  • The source and target domains are trained jointly.
  • For baseline methods, use -a resnet50 for the backbone of ResNet-50, and -a resnet_ibn50a for the backbone of IBN-ResNet.
  • For IDM, use -a resnet50_idm to insert IDM into the backbone of ResNet-50, and -a resnet_ibn50a_idm to insert IDM into the backbone of IBN-ResNet.
  • For strong baseline, use --use-xbm to implement XBM (a variant of Memory Bank).

Baseline Methods

To train the baseline methods in the paper, run commands like:

# Naive Baseline
CUDA_VISIBLE_DEVICES=0,1,2,3 sh scripts/run_naive_baseline.sh ${source} ${target} ${arch}

# Strong Baseline
CUDA_VISIBLE_DEVICES=0,1,2,3 sh scripts/run_strong_baseline.sh ${source} ${target} ${arch}

Some examples:

### market1501 -> dukemtmc ###

# ResNet-50
CUDA_VISIBLE_DEVICES=0,1,2,3 sh scripts/run_strong_baseline.sh market1501 dukemtmc resnet50 

# IBN-ResNet-50
CUDA_VISIBLE_DEVICES=0,1,2,3 sh scripts/run_strong_baseline.sh market1501 dukemtmc resnet_ibn50a

Training with IDM

To train the models with our IDM, run commands like:

# Naive Baseline + IDM
CUDA_VISIBLE_DEVICES=0,1,2,3 \
sh scripts/run_idm.sh ${source} ${target} ${arch} ${stage} ${mu1} ${mu2} ${mu3}

# Strong Baseline + IDM
CUDA_VISIBLE_DEVICES=0,1,2,3 \
sh scripts/run_idm_xbm.sh ${source} ${target} ${arch} ${stage} ${mu1} ${mu2} ${mu3}
  • Defaults: --stage 0 --mu1 0.7 --mu2 0.1 --mu3 1.0

Some examples:

### market1501 -> dukemtmc ###

# ResNet-50 + IDM
CUDA_VISIBLE_DEVICES=0,1,2,3 \
sh scripts/run_idm_xbm.sh market1501 dukemtmc resnet50_idm 0 0.7 0.1 1.0 

# IBN-ResNet-50 + IDM
CUDA_VISIBLE_DEVICES=0,1,2,3 \
sh scripts/run_idm_xbm.sh market1501 dukemtmc resnet_ibn50a_idm 0 0.7 0.1 1.0

Evaluation

We utilize 1 GTX-2080TI GPU for testing. Note that

  • use --dsbn for domain adaptive models, and add --test-source if you want to test on the source domain;
  • use -a resnet50 for the backbone of ResNet-50, and -a resnet_ibn50a for the backbone of IBN-ResNet.
  • use -a resnet50_idm for ResNet-50 + IDM, and -a resnet_ibn50a_idm for IBN-ResNet + IDM.

To evaluate the baseline model on the target-domain dataset, run:

CUDA_VISIBLE_DEVICES=0 \
python3 examples/test.py --dsbn -d ${dataset} -a ${arch} --resume ${resume} 

To evaluate the baseline model on the source-domain dataset, run:

CUDA_VISIBLE_DEVICES=0 \
python3 examples/test.py --dsbn --test-source -d ${dataset} -a ${arch} --resume ${resume} 

To evaluate the IDM model on the target-domain dataset, run:

CUDA_VISIBLE_DEVICES=0 \
python3 examples/test.py --dsbn-idm -d ${dataset} -a ${arch} --resume ${resume} --stage ${stage} 

To evaluate the IDM model on the source-domain dataset, run:

CUDA_VISIBLE_DEVICES=0 \
python3 examples/test.py --dsbn-idm --test-source -d ${dataset} -a ${arch} --resume ${resume} --stage ${stage} 

Some examples:

### market1501 -> dukemtmc ###

# evaluate the target domain "dukemtmc" on the strong baseline model
CUDA_VISIBLE_DEVICES=0 \
python3 examples/test.py --dsbn  -d dukemtmc -a resnet50 \
--resume logs/resnet50_strong_baseline/market1501-TO-dukemtmc/model_best.pth.tar 

# evaluate the source domain "market1501" on the strong baseline model
CUDA_VISIBLE_DEVICES=0 \
python3 examples/test.py --dsbn --test-source  -d market1501 -a resnet50 \
--resume logs/resnet50_strong_baseline/market1501-TO-dukemtmc/model_best.pth.tar 

# evaluate the target domain "dukemtmc" on the IDM model (after stage-0)
python3 examples/test.py --dsbn-idm  -d dukemtmc -a resnet50_idm \
--resume logs/resnet50_idm_xbm/market1501-TO-dukemtmc/model_best.pth.tar --stage 0

# evaluate the target domain "dukemtmc" on the IDM model (after stage-0)
python3 examples/test.py --dsbn-idm --test-source  -d market1501 -a resnet50_idm \
--resume logs/resnet50_idm_xbm/market1501-TO-dukemtmc/model_best.pth.tar --stage 0

Acknowledgement

Our code is based on MMT and SpCL. Thanks for Yixiao's wonderful works.

Citation

If you find our work is useful for your research, please kindly cite our paper

@inproceedings{dai2021idm,
  title={IDM: An Intermediate Domain Module for Domain Adaptive Person Re-ID},
  author={Dai, Yongxing and Liu, Jun and Sun, Yifan and Tong, Zekun and Zhang, Chi and Duan, Ling-Yu},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  year={2021}
}

If you have any questions, please leave an issue or contact me: [email protected]

Owner
Yongxing Dai
I am now a fourth-year PhD student at National Engineering Lab for Video Technology in Peking University, Beijing, China
Yongxing Dai
Largest list of models for Core ML (for iOS 11+)

Since iOS 11, Apple released Core ML framework to help developers integrate machine learning models into applications. The official documentation We'v

Kedan Li 5.6k Jan 08, 2023
Dynamic Capacity Networks using Tensorflow

Dynamic Capacity Networks using Tensorflow Dynamic Capacity Networks (DCN; http://arxiv.org/abs/1511.07838) implementation using Tensorflow. DCN reduc

Taeksoo Kim 8 Feb 23, 2021
meProp: Sparsified Back Propagation for Accelerated Deep Learning

meProp The codes were used for the paper meProp: Sparsified Back Propagation for Accelerated Deep Learning with Reduced Overfitting (ICML 2017) [pdf]

LancoPKU 107 Nov 18, 2022
Replication attempt for the Protein Folding Model

RGN2-Replica (WIP) To eventually become an unofficial working Pytorch implementation of RGN2, an state of the art model for MSA-less Protein Folding f

Eric Alcaide 36 Nov 29, 2022
Junction Tree Variational Autoencoder for Molecular Graph Generation (ICML 2018)

Junction Tree Variational Autoencoder for Molecular Graph Generation Official implementation of our Junction Tree Variational Autoencoder https://arxi

Wengong Jin 418 Jan 07, 2023
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022
WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction"

BiRTE WSDM2022 "A Simple but Effective Bidirectional Extraction Framework for Relational Triple Extraction" Requirements The main requirements are: py

9 Dec 27, 2022
A blender add-on that automatically re-aligns wrong axis objects.

Auto Align A blender add-on that automatically re-aligns wrong axis objects. Usage There are three options available in the 3D Viewport Sidebar It

29 Nov 25, 2022
Official PyTorch Implementation of Learning Architectures for Binary Networks

Learning Architectures for Binary Networks An Pytorch Implementation of the paper Learning Architectures for Binary Networks (BNAS) (ECCV 2020) If you

Computer Vision Lab. @ GIST 25 Jun 09, 2022
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
Code for "Localization with Sampling-Argmax", NeurIPS 2021

Localization with Sampling-Argmax [Paper] [arXiv] [Project Page] Localization with Sampling-Argmax Jiefeng Li, Tong Chen, Ruiqi Shi, Yujing Lou, Yong-

JeffLi 71 Dec 17, 2022
Repository for MeshTalk supplemental material and code once the (already approved) 16 GHS captures our lab will make publicly available are released.

meshtalk This repository contains code to run MeshTalk for face animation from audio. If you use MeshTalk, please cite @inproceedings{richard2021mesht

Meta Research 221 Jan 06, 2023
Representing Long-Range Context for Graph Neural Networks with Global Attention

Graph Augmentation Graph augmentation/self-supervision/etc. Algorithms gcn gcn+virtual node gin gin+virtual node PNA GraphTrans Augmentation methods N

UC Berkeley RISE 67 Dec 30, 2022
Collection of generative models in Pytorch version.

pytorch-generative-model-collections Original : [Tensorflow version] Pytorch implementation of various GANs. This repository was re-implemented with r

Hyeonwoo Kang 2.4k Dec 31, 2022
Deep Learning to Improve Breast Cancer Detection on Screening Mammography

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Deep Learning to Improve Breast

Li Shen 305 Jan 03, 2023
Unofficial PyTorch implementation of Fastformer based on paper "Fastformer: Additive Attention Can Be All You Need"."

Fastformer-PyTorch Unofficial PyTorch implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Usage : import t

Hong-Jia Chen 126 Dec 06, 2022
Jiminy Cricket Environment (NeurIPS 2021)

Jiminy Cricket This is the repository for "What Would Jiminy Cricket Do? Towards Agents That Behave Morally" by Dan Hendrycks*, Mantas Mazeika*, Andy

Dan Hendrycks 15 Aug 29, 2022