torchsummaryDynamic: support real FLOPs calculation of dynamic network or user-custom PyTorch ops

Overview

torchsummaryDynamic

Improved tool of torchsummaryX.

torchsummaryDynamic support real FLOPs calculation of dynamic network or user-custom PyTorch ops.

Usage

from torchsummaryDynamic import summary
summary(your_model, torch.zeros((1, 3, 224, 224)))

# or

from torchsummaryDynamic import summary
summary(your_model, torch.zeros((1, 3, 224, 224)), calc_op_types=(nn.Conv2d, nn.Linear))

Args:

  • model (Module): Model to summarize
  • x (Tensor): Input tensor of the model with [N, C, H, W] shape dtype and device have to match to the model
  • calc_op_types (Tuple): Tuple of op types to be calculated
  • args, kwargs: Other arguments used in model.forward function

Examples

Calculate Dynamic Conv2d FLOPs/params

import torch
import torch.nn as nn
import torch.nn.functional as F
from torchsummaryDynamic import summary

class USConv2d(nn.Conv2d):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True, us=[False, False]):
        super(USConv2d, self).__init__(in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias)
        self.width_mult = None
        self.us = us

    def forward(self, inputs):
        in_channels = inputs.shape[1] // self.groups if self.us[0] else self.in_channels // self.groups
        out_channels = int(self.out_channels * self.width_mult) if self.us[1] else self.out_channels

        weight = self.weight[:out_channels, :in_channels, :, :]
        bias = self.bias[:out_channels] if self.bias is not None else self.bias

        y = F.conv2d(inputs, weight, bias, self.stride, self.padding, self.dilation, self.groups)
        return y

model = nn.Sequential(
    USConv2d(3, 32, 3, us=[True, True]),
)

# width_mult=1.0
model.apply(lambda m: setattr(m, 'width_mult', 1.0))
summary(model, torch.zeros(1, 3, 224, 224))

# width_mult=0.5
model.apply(lambda m: setattr(m, 'width_mult', 0.5))
summary(model, torch.zeros(1, 3, 224, 224))

Output

# width_mult=1.0
==========================================================
        Kernel Shape       Output Shape  Params  Mult-Adds
Layer                                                     
0_0    [3, 32, 3, 3]  [1, 32, 222, 222]     896   42581376
----------------------------------------------------------
                        Totals
Total params               896
Trainable params           896
Non-trainable params         0
Mult-Adds             42581376
==========================================================

# width_mult=0.5
==========================================================
        Kernel Shape       Output Shape  Params  Mult-Adds
Layer                                                     
0_0    [3, 32, 3, 3]  [1, 16, 222, 222]     896   21290688
----------------------------------------------------------
                        Totals
Total params               896
Trainable params           896
Non-trainable params         0
Mult-Adds             21290688
==========================================================
Owner
Bohong Chen
Bohong Chen
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
A repository for benchmarking neural vocoders by their quality and speed.

License The majority of VocBench is licensed under CC-BY-NC, however portions of the project are available under separate license terms: Wavenet, Para

Meta Research 177 Dec 12, 2022
Python implementation of ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images, AAAI2022.

ADD: Frequency Attention and Multi-View based Knowledge Distillation to Detect Low-Quality Compressed Deepfake Images Binh M. Le & Simon S. Woo, "ADD:

2 Oct 24, 2022
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training

[ICLR 2022] The Unreasonable Effectiveness of Random Pruning: Return of the Most Naive Baseline for Sparse Training The Unreasonable Effectiveness of

VITA 44 Dec 23, 2022
PaddleRobotics is an open-source algorithm library for robots based on Paddle, including open-source parts such as human-robot interaction, complex motion control, environment perception, SLAM positioning, and navigation.

简体中文 | English PaddleRobotics paddleRobotics是基于paddle的机器人开源算法库集,包括人机交互、复杂运动控制、环境感知、slam定位导航等开源算法部分。 人机交互 主动多模交互技术TFVT-HRI 主动多模交互技术是通过视觉、语音、触摸传感器等输入机器人

185 Dec 26, 2022
Official TensorFlow code for the forthcoming paper

~ Efficient-CapsNet ~ Are you tired of over inflated and overused convolutional neural networks? You're right! It's time for CAPSULES :)

Vittorio Mazzia 203 Jan 08, 2023
This is a tensorflow-based rotation detection benchmark, also called AlphaRotate.

AlphaRotate: A Rotation Detection Benchmark using TensorFlow Abstract AlphaRotate is maintained by Xue Yang with Shanghai Jiao Tong University supervi

yangxue 972 Jan 05, 2023
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
Spectral normalization (SN) is a widely-used technique for improving the stability and sample quality of Generative Adversarial Networks (GANs)

Why Spectral Normalization Stabilizes GANs: Analysis and Improvements [paper (NeurIPS 2021)] [paper (arXiv)] [code] Authors: Zinan Lin, Vyas Sekar, Gi

Zinan Lin 32 Dec 16, 2022
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
Twin-deep neural network for semi-supervised learning of materials properties

Deep Semi-Supervised Teacher-Student Material Synthesizability Prediction Citation: Semi-supervised teacher-student deep neural network for materials

MLEG 3 Dec 14, 2022
Imaging, analysis, and simulation software for radio interferometry

ehtim (eht-imaging) Python modules for simulating and manipulating VLBI data and producing images with regularized maximum likelihood methods. This ve

Andrew Chael 5.2k Dec 28, 2022
Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021)

Style-based Point Generator with Adversarial Rendering for Point Cloud Completion (CVPR 2021) An efficient PyTorch library for Point Cloud Completion.

Microsoft 119 Jan 02, 2023
Code for unmixing audio signals in four different stems "drums, bass, vocals, others". The code is adapted from "Jukebox: A Generative Model for Music"

Status: Archive (code is provided as-is, no updates expected) Disclaimer This code is a based on "Jukebox: A Generative Model for Music" Paper We adju

Wadhah Zai El Amri 24 Dec 29, 2022
Code for CMaskTrack R-CNN (proposed in Occluded Video Instance Segmentation)

CMaskTrack R-CNN for OVIS This repo serves as the official code release of the CMaskTrack R-CNN model on the Occluded Video Instance Segmentation data

Q . J . Y 61 Nov 25, 2022
BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training

BigDetection: A Large-scale Benchmark for Improved Object Detector Pre-training By Likun Cai, Zhi Zhang, Yi Zhu, Li Zhang, Mu Li, Xiangyang Xue. This

290 Dec 29, 2022
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 06, 2022