RP-GAN: Stable GAN Training with Random Projections

Overview

RP-GAN: Stable GAN Training with Random Projections

Interpolated images from our GAN

This repository contains a reference implementation of the algorithm described in the paper:

Behnam Neyshabur, Srinadh Bhojanapalli, and Ayan Chakrabarti, "Stabilizing GAN Training with Multiple Random Projections," arXiv:1705.07831 [cs.LG], 2017.

Pre-trained generator models are not included in the repository due to their size, but are available as binary downloads as part of the release. This code and data is being released for research use. If you use the code in research that results in a publication, we request that you kindly cite the above paper. Please direct any questions to [email protected].

Requirements

The code uses the tensorflow library, and has been tested with versions 0.9 and 0.11 with both Python2 and Python3. You will need a modern GPU for training in a reasonable amount of time, but the sampling code should work on a CPU.

Sampling with Trained Models

We first describe usage of scripts for sampling from trained models. You can use these scripts for models you train yourself, or use the provided pre-trained models.

Pre-trained Models

We provide a number of pre-trained models in the release, corresponding to the experiments in the paper. The parameters of each model (both for training and sampling) are described in .py files the exp/ directory. face1.py describes a face image model trained in the traditional setting with a single discriminator, while faceNN.py are models trained with multiple discriminators each acting on one of NN random low-dimensional projections. face48.py describes the main face model used in our experiments, while dog12.py is the model trained with 12 discriminators on the Imagenet-Canines set. After downloading the trained model archive files, unzip them in the repository root directory. This should create files in sub-directories of models/.

Generating Samples

Use sample.py to generate samples using any of trained models as:

$ ./sample.py expName[,seed] out.png [iteration]

where expName is the name of the experiment file (without the .py extension), and out.png is the file to save the generated samples to. The script accepts optional parameters: seed (default 0) specifies the random seed used to generate the noise vectors provided to the generator, and iteration (default: max iteration available as saved file) specifies which model file to use in case multiple snapshots are available. E.g.,

$ ./sample.py face48 out.png      # Sample from the face48 experiment, using 
                                  # seed 0, and the latest model file.
$ ./sample.py face48,100 out.png  # Sample from the face48 experiment, using
                                  # seed 100, and the latest model file.
$ ./sample.py face1 out.png       # Sample from the single discriminator face
                                  # experiment, and the latest model file.
$ ./sample.py face1 out.png 40000 # Sample from the single discriminator face
                                  # experiment, and the 40k iterations model.
Interpolating in Latent Space

We also provide a script to produce interpolated images like the ones at the top of this page. However, before you can use this script, you need to create a version of the model file that contains the population mean-variance statistics of the activations to be used in batch-norm la(sample.py above uses batch norm statistics which is fine since it is working with a large batch of noise vectors. However, for interpolation, you will typically be working with smaller, more correlated, batches, and therefore should use batch statistics).

To create this version of the model file, use the provided script fixbn.py as:

$ CUDA_VISIBLE_DEVICES= ./fixbn.py expName [iteration]

This will create a second version of the model weights file (with extension .bgmodel.npz instead of .gmodel.npz) that also stores the batch statistics. Like for sample.py, you can provide a second optional argument to specify a specific model snapshot corresponding to an iteration number.

Note that we call the script with CUDA_VISIBLE_DEVICES= to force tensorflow to use the CPU instead of the GPU. This is because we compute these stats over a relatively large batch which typically doesn't fit in GPU memory (and since it's only one forward pass, running time isn't really an issue).

You only need to call fixbn.py once, and after that, you can use the script interp.py to create interpolated samples. The script will generate multiple rows of images, each producing samples from noise vectors interpolated between a pair from left-to-right. The script lets you specify these pairs of noise vectors as IDs:

$ ./interp.py expName[,seed[,iteration]] out.png lid,rid lid,rid ....

The first parameter now has two optional comma-separated arguments beyond the model name for seed and iteration. After this and the output file name, it agrees an arbitrary number of pairs of left-right image IDs, for each row of desired images in the output. These IDs correspond to the number of the image, in reading order, in the output generated by sample.py (with the same seed). For example, to create the images at the top of the page, use:

$ ./interp.py face48 out.png 137,65 146,150 15,138 54,72 38,123 36,93

Training

To train your own model, you will need to create a new model file (say myown.py) in the exp/ directory. See the existing model files for reference. Here is an explanation of some of the key parameters:

  • wts_dir: Directory in which to store model weights. This directory must already exist.
  • imsz: Resolution / Size of the images (will be square color images of size imsz x imsz).
  • lfile: Path to a list file for the images you want to train on, where each line of the file contains a path to an image.
  • crop: Boolean (True or False). Indicates whether the images are already the correct resolution, or need to be cropped. If True, these images will first be resized so that the smaller side matches imsz, and then a random crop along the other dimension will be used for training.

Before you begin training, you will need to create a file called filts.npz which defines the convolutional filters for the random projections. See the filts/ directory for the filters used for the pre-trained models, as well as instructions on a script for creating your own. On

Once you have created the model file and prepared the directory, you can begin training by using the train.py script as:

$ ./train.py myown

where the first parameter is the name of your model file.

We also provide a script for traditional training---baseline_train.py---with a single discriminator acting on the original image. It is used in the same way, except it doesn't require a filts.npz file in the weights directory.


Acknowledgments

This work was supported by the National Science Foundation under award no. IIS-1820693. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors, and do not necessarily reflect the views of the National Science Foundation.

You might also like...
Official repository for CVPR21 paper "Deep Stable Learning for Out-Of-Distribution Generalization".

StableNet StableNet is a deep stable learning method for out-of-distribution generalization. This is the official repo for CVPR21 paper "Deep Stable L

This is the official implementation of the paper
This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

TeST: Temporal-Stable Thresholding for Semi-supervised Learning
TeST: Temporal-Stable Thresholding for Semi-supervised Learning

TeST: Temporal-Stable Thresholding for Semi-supervised Learning TeST Illustration Semi-supervised learning (SSL) offers an effective method for large-

Simple converter for deploying Stable-Baselines3 model to TFLite and/or Coral

Running SB3 developed agents on TFLite or Coral Introduction I've been using Stable-Baselines3 to train agents against some custom Gyms, some of which

RL agent to play μRTS with Stable-Baselines3
RL agent to play μRTS with Stable-Baselines3

Gym-μRTS with Stable-Baselines3/PyTorch This repo contains an attempt to reproduce Gridnet PPO with invalid action masking algorithm to play μRTS usin

Additional code for Stable-baselines3 to load and upload models from the Hub.

Hugging Face x Stable-baselines3 A library to load and upload Stable-baselines3 models from the Hub. Installation With pip Examples [Todo: add colab t

Self-driving car env with PPO algorithm from stable baseline3
Self-driving car env with PPO algorithm from stable baseline3

Self-driving car with RL stable baseline3 Most of the project develop from https://github.com/GerardMaggiolino/Gym-Medium-Post Please check it out! Th

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

(SIGIR2020) “Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback’’

Asymmetric Tri-training for Debiasing Missing-Not-At-Random Explicit Feedback About This repository accompanies the real-world experiments conducted i

Releases(v1.0)
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
Code to use Augmented Shapiro Wilks Stopping, as well as code for the paper "Statistically Signifigant Stopping of Neural Network Training"

This codebase is being actively maintained, please create and issue if you have issues using it Basics All data files are included under losses and ea

J K Terry 32 Nov 09, 2021
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
A very short and easy implementation of Quantile Regression DQN

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
Camera-caps - Examine the camera capabilities for V4l2 cameras

camera-caps This is a graphical user interface over the v4l2-ctl command line to

Jetsonhacks 25 Dec 26, 2022
[CVPR 2021] Released code for Counterfactual Zero-Shot and Open-Set Visual Recognition

Counterfactual Zero-Shot and Open-Set Visual Recognition This project provides implementations for our CVPR 2021 paper Counterfactual Zero-S

144 Dec 24, 2022
A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis

WaveGlow A PyTorch implementation of the WaveGlow: A Flow-based Generative Network for Speech Synthesis Quick Start: Install requirements: pip install

Yuchao Zhang 204 Jul 14, 2022
Augmentation for Single-Image-Super-Resolution

SRAugmentation Augmentation for Single-Image-Super-Resolution Implimentation CutBlur Cutout CutMix Cutup CutMixup Blend RGBPermutation Identity OneOf

Yubo 6 Jun 27, 2022
Clustering with variational Bayes and population Monte Carlo

pypmc pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target densi

45 Feb 06, 2022
(under submission) Bayesian Integration of a Generative Prior for Image Restoration

BIGPrior: Towards Decoupling Learned Prior Hallucination and Data Fidelity in Image Restoration Authors: Majed El Helou, and Sabine Süsstrunk {Note: p

Majed El Helou 22 Dec 17, 2022
Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal Action Localization' (ICCV-21 Oral)

Learning-Action-Completeness-from-Points Official Pytorch Implementation of 'Learning Action Completeness from Points for Weakly-supervised Temporal A

Pilhyeon Lee 67 Jan 03, 2023
CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces

CTRMs: Learning to Construct Cooperative Timed Roadmaps for Multi-agent Path Planning in Continuous Spaces This is a repository for the following pape

17 Oct 13, 2022
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
[AI6122] Text Data Management & Processing

[AI6122] Text Data Management & Processing is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instruc

HT. Li 1 Jan 17, 2022
Automate issue discovery for your projects against Lightning nightly and releases.

Automated Testing for Lightning EcoSystem Projects Automate issue discovery for your projects against Lightning nightly and releases. You get CPUs, Mu

Pytorch Lightning 41 Dec 24, 2022
RANZCR-CLiP 7th Place Solution

RANZCR-CLiP 7th Place Solution This repository is WIP. (18 Mar 2021) Installation git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.gi

Hiroshechka Y 21 Oct 22, 2022
ObjectDetNet is an easy, flexible, open-source object detection framework

Getting started with the ObjectDetNet ObjectDetNet is an easy, flexible, open-source object detection framework which allows you to easily train, resu

5 Aug 25, 2020
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022