Bayesian Generative Adversarial Networks in Tensorflow

Related tags

Deep Learningbayesgan
Overview

Bayesian Generative Adversarial Networks in Tensorflow

This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and Andrew Gordon Wilson. This paper appears at NIPS 2017.

Please cite our paper if you find this code useful in your research. The bibliographic information for the paper is

@inproceedings{saatciwilson,
  title={Bayesian gan},
  author={Saatci, Yunus and Wilson, Andrew G},
  booktitle={Advances in neural information processing systems},
  pages={3622--3631},
  year={2017}
}

Contents

  1. Introduction
  2. Dependencies
  3. Training options
  4. Usage
    1. Installation
    2. Synthetic Data
    3. Examples: MNIST, CIFAR10, CelebA, SVHN
    4. Custom data

Introduction

In the Bayesian GAN we propose conditional posteriors for the generator and discriminator weights, and marginalize these posteriors through stochastic gradient Hamiltonian Monte Carlo. Key properties of the Bayesian approach to GANs include (1) accurate predictions on semi-supervised learning problems; (2) minimal intervention for good performance; (3) a probabilistic formulation for inference in response to adversarial feedback; (4) avoidance of mode collapse; and (5) a representation of multiple complementary generative and discriminative models for data, forming a probabilistic ensemble.

We illustrate a multimodal posterior over the parameters of the generator. Each setting of these parameters corresponds to a different generative hypothesis for the data. We show here samples generated for two different settings of this weight vector, corresponding to different writing styles. The Bayesian GAN retains this whole distribution over parameters. By contrast, a standard GAN represents this whole distribution with a point estimate (analogous to a single maximum likelihood solution), missing potentially compelling explanations for the data.

Dependencies

This code has the following dependencies (version number crucial):

  • python 2.7
  • tensorflow==1.0.0

To install tensorflow 1.0.0 on linux please follow instructions at https://www.tensorflow.org/versions/r1.0/install/.

  • scikit-learn==0.17.1

You can install scikit-learn 0.17.1 with the following command

pip install scikit-learn==0.17.1

Alternatively, you can create a conda environment and set it up using the provided environment.yml file, as such:

conda env create -f environment.yml -n bgan

then load the environment using

source activate bgan

Usage

Installation

  1. Install the required dependencies
  2. Clone this repository

Synthetic Data

To run the synthetic experiment from the paper you can use bgan_synth script. For example, the following comand will train the Bayesian GAN (with D=100 and d=10) for 5000 iterations and store the results in .

./bgan_synth.py --x_dim 100 --z_dim 10 --numz 10 --out 
   

   

To run the ML GAN for the same data run

./bgan_synth.py --x_dim 100 --z_dim 10 --numz 1 --out 
   

   

bgan_synth has --save_weights, --out_dir, --z_dim, --numz, --wasserstein, --train_iter and --x_dim parameters. x_dim contolls the dimensionality of the observed data (x in the paper). For description of other parameters please see Training options.

Once you run the above two commands you will see the output of each 100th iteration in . So, for example, the Bayesian GAN's output at the 900th iteration will look like:

In contrast, the output of the standard GAN (corresponding to numz=1, which forces ML estimation) will look like:

indicating clearly the tendency of mode collapse in the standard GAN which, for this synthetic example, is completely avoided by the Bayesian GAN.

To explore the sythetic experiment further, and to generate the Jensen-Shannon divergence plots, you can check out the notebook synth.ipynb.

Unsupervised and Semi-Supervised Learning on benchmark datasets

MNIST, CIFAR10, CelebA, SVHN

bayesian_gan_hmc script allows to train the model on standard and custom datasets. Below we describe the usage of this script.

Data preparation

To reproduce the experiments on MNIST, CIFAR10, CelebA and SVHN datasets you need to prepare the data and use a correct --data_path.

  • for MNIST you don't need to prepare the data and can provide any --data_path;
  • for CIFAR10 please download and extract the python version of the data from https://www.cs.toronto.edu/~kriz/cifar.html; then use the path to the directory containing cifar-10-batches-py as --data_path;
  • for SVHN please download train_32x32.mat and test_32x32.mat files from http://ufldl.stanford.edu/housenumbers/ and use the directory containing these files as your --data_path;
  • for CelebA you will need to have openCV installed. You can find the download links for the data at http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html. You will need to create celebA folder with Anno and img_align_celeba subfolders. Anno must contain the list_attr_celeba.txt and img_align_celeba must contain the .jpg files. You will also need to crop the images by running datasets/crop_faces.py script with --data_path where is the path to the folder containing celebA. When training the model, you will need to use the same for --data_path;

Unsupervised training

You can run unsupervised learning by running the bayesian_gan_hmc script without --semi parameter. For example, use

./run_bgan.py --data_path 
   
     --dataset svhn --numz 10 --num_mcmc 2 --out_dir 

    
      --train_iter 75000 --save_samples --n_save 100

    
   

to train the model on the SVHN dataset. This command will run the method for 75000 iterations and save samples every 100 iterations. Here must lead to the directory where the results will be stored. See data preparation section for an explanation of how to set . See training options section for a description of other training options.

         

Semi-supervised training

To run the semi-supervised experiments you can use the run_bgan_semi.py script, which offers many options including the following:

  • --out_dir: path to the folder, where the outputs will be stored
  • --n_save: samples and weights are saved every n_save iterations; default 100
  • --z_dim: dimensionalit of z vector for generator; default 100
  • --data_path: path to the data; see data preparation for a detailed discussion; this parameter is required
  • --dataset: can be mnist, cifar, svhn or celeb; default mnist
  • --batch_size: batch size for training; default 64
  • --prior_std: std of the prior distribution over the weights; default 1
  • --num_gen: same as J in the paper; number of samples of z to integrate it out for generators; default 1
  • --num_disc: same as J_D in the paper; number of samples of z to integrate it out for discriminators; default 1
  • --num_mcmc: same as M in the paper; number of MCMC NN weight samples per z; default 1
  • --lr: learning rate used by the Adam optimizer; default 0.0002
  • --optimizer: optimization method to be used: adam (tf.train.AdamOptimizer) or sgd (tf.train.MomentumOptimizer); default adam
  • --N: number of labeled samples for semi-supervised learning
  • --train_iter: number of training iterations; default 50000
  • --save_samples: save generated samples during training
  • --save_weights: save weights during training
  • --random_seed: random seed; note that setting this seed does not lead to 100% reproducible results if GPU is used

You can also run WGANs with --wasserstein or train an ensemble of DCGANs with --ml_ensemble . In particular you can train a DCGAN with --ml.

You can train the model in semi-supervised setting by running bayesian_gan_hmc with --semi option. Use -N parameter to set the number of labeled examples to train on. For example, use

./run_bgan_semi.py --data_path 
   
     --dataset cifar --num_gen 10 --num_mcmc 2
--out_dir 
    
      --train_iter 100000 --N 4000 --lr 0.0005

    
   

to train the model on CIFAR10 dataset with 4000 labeled examples. This command will train the model for 100000 iterations and store the outputs in folder.

To train the model on MNIST with 100 labeled examples you can use the following command.

./bayesian_gan_hmc.py --data_path 
   
    / --dataset mnist --num_gen 10 --num_mcmc 2
--out_dir 
    
      --train_iter 100000 -N 100 --semi --lr 0.0005

    
   

Custom data

To train the model on a custom dataset you need to define a class with a specific interface. Suppose we want to train the model on the digits dataset. This datasets consists of 8x8 images of digits. Let's suppose that the data is stored in x_tr.npy, y_tr.npy, x_te.npy and y_te.npy files. We will assume that x_tr.npy and x_te.npy have shapes of the form (?, 8, 8, 1). We can then define the class corresponding to this dataset in bgan_util.py as follows.

class Digits:

    def __init__(self):
        self.imgs = np.load('x_tr.npy') 
        self.test_imgs = np.load('x_te.npy')
        self.labels = np.load('y_tr.npy')
        self.test_labels = np.load('y_te.npy')
        self.labels = one_hot_encoded(self.labels, 10)
        self.test_labels = one_hot_encoded(self.test_labels, 10) 
        self.x_dim = [8, 8, 1]
        self.num_classes = 10

    @staticmethod
    def get_batch(batch_size, x, y): 
        """Returns a batch from the given arrays.
        """
        idx = np.random.choice(range(x.shape[0]), size=(batch_size,), replace=False)
        return x[idx], y[idx]

    def next_batch(self, batch_size, class_id=None):
        return self.get_batch(batch_size, self.imgs, self.labels)

    def test_batch(self, batch_size):
        return self.get_batch(batch_size, self.test_imgs, self.test_labels)

The class must have next_batch and test_batch, and must have the imgs, labels, test_imgs, test_labels, x_dim and num_classes fields.

Now we can import the Digits class in bayesian_gan_hmc.py

from bgan_util import Digits

and add the following lines to to the processing of --dataset parameter.

if args.dataset == "digits":
    dataset = Digits()

After this preparation is done, we can train the model with, for example,

./run_bgan_semi.py --data_path 
   
     --dataset digits --num_gen 10 --num_mcmc 2 
--out_dir 
    
      --train_iter 100000 --save_samples

    
   

Acknowledgements

We thank Pavel Izmailov and Ben Athiwaratkun for help with stress testing this code and creating the tutorial.

Owner
Andrew Gordon Wilson
Machine Learning Professor at New York University.
Andrew Gordon Wilson
Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr.

fix_m1_rgb Script that attempts to force M1 macs into RGB mode when used with monitors that are defaulting to YPbPr. No warranty provided for using th

Kevin Gao 116 Jan 01, 2023
Benchmark VAE - Library for Variational Autoencoder benchmarking

Documentation pythae This library implements some of the most common (Variational) Autoencoder models. In particular it provides the possibility to pe

1.1k Jan 02, 2023
PyTorch implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy

Anomaly Transformer in PyTorch This is an implementation of Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. This pape

spencerbraun 160 Dec 19, 2022
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
UFPR-ADMR-v2 Dataset

UFPR-ADMR-v2 Dataset The UFPR-ADMRv2 dataset contains 5,000 dial meter images obtained on-site by employees of the Energy Company of Paraná (Copel), w

Gabriel Salomon 8 Sep 29, 2022
This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

SPARQLing Database Queries from Intermediate Question Decompositions This repo is the implementation of the following paper: SPARQLing Database Querie

Yandex Research 20 Dec 19, 2022
A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers.

Dying Light 2 PAKFile Utility A Dying Light 2 (DL2) PAKFile Utility for Modders and Mod Makers. This tool aims to make PAKFile (.pak files) modding a

RHQ Online 12 Aug 26, 2022
Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021).

STAR-pytorch Implementation for paper "STAR: A Structure-aware Lightweight Transformer for Real-time Image Enhancement" (ICCV 2021). CVF (pdf) STAR-DC

43 Dec 21, 2022
Standalone pre-training recipe with JAX+Flax

Sabertooth Sabertooth is standalone pre-training recipe based on JAX+Flax, with data pipelines implemented in Rust. It runs on CPU, GPU, and/or TPU, b

Nikita Kitaev 26 Nov 28, 2022
Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices

Joint Channel and Weight Pruning for Model Acceleration on Mobile Devices Abstract For practical deep neural network design on mobile devices, it is e

11 Dec 30, 2022
Compare GAN code.

Compare GAN This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks: losses (such non-saturat

Google 1.8k Jan 05, 2023
Layered Neural Atlases for Consistent Video Editing

Layered Neural Atlases for Consistent Video Editing Project Page | Paper This repository contains an implementation for the SIGGRAPH Asia 2021 paper L

Yoni Kasten 353 Dec 27, 2022
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
This a classic fintech problem that introduces real life difficulties such as data imbalance. Check out the notebook to find out more!

Credit Card Fraud Detection Introduction Online transactions have become a crucial part of any business over the years. Many of those transactions use

Jonathan Hasbani 0 Jan 20, 2022
基于AlphaPose的TensorRT加速

1. Requirements CUDA 11.1 TensorRT 7.2.2 Python 3.8.5 Cython PyTorch 1.8.1 torchvision 0.9.1 numpy 1.17.4 (numpy版本过高会出报错 this issue ) python-package s

52 Dec 06, 2022
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
ICON: Implicit Clothed humans Obtained from Normals (CVPR 2022)

ICON: Implicit Clothed humans Obtained from Normals Yuliang Xiu · Jinlong Yang · Dimitrios Tzionas · Michael J. Black CVPR 2022 News 🚩 [2022/04/26] H

Yuliang Xiu 1.1k Jan 04, 2023