Compare GAN code.

Overview

Compare GAN

This repository offers TensorFlow implementations for many components related to Generative Adversarial Networks:

  • losses (such non-saturating GAN, least-squares GAN, and WGAN),
  • penalties (such as the gradient penalty),
  • normalization techniques (such as spectral normalization, batch normalization, and layer normalization),
  • neural architectures (BigGAN, ResNet, DCGAN), and
  • evaluation metrics (FID score, Inception Score, precision-recall, and KID score).

The code is configurable via Gin and runs on GPU/TPU/CPUs. Several research papers make use of this repository, including:

  1. Are GANs Created Equal? A Large-Scale Study [Code]
    Mario Lucic*, Karol Kurach*, Marcin Michalski, Sylvain Gelly, Olivier Bousquet [NeurIPS 2018]

  2. The GAN Landscape: Losses, Architectures, Regularization, and Normalization [Code] [Colab]
    Karol Kurach*, Mario Lucic*, Xiaohua Zhai, Marcin Michalski, Sylvain Gelly [ICML 2019]

  3. Assessing Generative Models via Precision and Recall [Code]
    Mehdi S. M. Sajjadi, Olivier Bachem, Mario Lucic, Olivier Bousquet, Sylvain Gelly [NeurIPS 2018]

  4. GILBO: One Metric to Measure Them All [Code]
    Alexander A. Alemi, Ian Fischer [NeurIPS 2018]

  5. A Case for Object Compositionality in Deep Generative Models of Images [Code]
    Sjoerd van Steenkiste, Karol Kurach, Sylvain Gelly [2018]

  6. On Self Modulation for Generative Adversarial Networks [Code]
    Ting Chen, Mario Lucic, Neil Houlsby, Sylvain Gelly [ICLR 2019]

  7. Self-Supervised GANs via Auxiliary Rotation Loss [Code] [Colab]
    Ting Chen, Xiaohua Zhai, Marvin Ritter, Mario Lucic, Neil Houlsby [CVPR 2019]

  8. High-Fidelity Image Generation With Fewer Labels [Code] [Blog Post] [Colab]
    Mario Lucic*, Michael Tschannen*, Marvin Ritter*, Xiaohua Zhai, Olivier Bachem, Sylvain Gelly [ICML 2019]

Installation

You can easily install the library and all necessary dependencies by running: pip install -e . from the compare_gan/ folder.

Running experiments

Simply run the main.py passing a --model_dir (this is where checkpoints are stored) and a --gin_config (defines which model is trained on which data set and other training options). We provide several example configurations in the example_configs/ folder:

  • dcgan_celeba64: DCGAN architecture with non-saturating loss on CelebA 64x64px
  • resnet_cifar10: ResNet architecture with non-saturating loss and spectral normalization on CIFAR-10
  • resnet_lsun-bedroom128: ResNet architecture with WGAN loss and gradient penalty on LSUN-bedrooms 128x128px
  • sndcgan_celebahq128: SN-DCGAN architecture with non-saturating loss and spectral normalization on CelebA-HQ 128x128px
  • biggan_imagenet128: BigGAN architecture with hinge loss and spectral normalization on ImageNet 128x128px

Training and evaluation

To see all available options please run python main.py --help. Main options:

  • To train the model use --schedule=train (default). Training is resumed from the last saved checkpoint.
  • To evaluate all checkpoints use --schedule=continuous_eval --eval_every_steps=0. To evaluate only checkpoints where the step size is divisible by 5000, use --schedule=continuous_eval --eval_every_steps=5000. By default, 3 averaging runs are used to estimate the Inception Score and the FID score. Keep in mind that when running locally on a single GPU it may not be possible to run training and evaluation simultaneously due to memory constraints.
  • To train and evaluate the model use --schedule=eval_after_train --eval_every_steps=0.

Training on Cloud TPUs

We recommend using the ctpu tool to create a Cloud TPU and corresponding Compute Engine VM. We use v3-128 Cloud TPU v3 Pod for training models on ImageNet in 128x128 resolutions. You can use smaller slices if you reduce the batch size (options.batch_size in the Gin config) or model parameters. Keep in mind that the model quality might change. Before training make sure that the environment variable TPU_NAME is set. Running evaluation on TPUs is currently not supported. Use a VM with a single GPU instead.

Datasets

Compare GAN uses TensorFlow Datasets and it will automatically download and prepare the data. For ImageNet you will need to download the archive yourself. For CelebAHq you need to download and prepare the images on your own. If you are using TPUs make sure to point the training script to your Google Storage Bucket (--tfds_data_dir).

Owner
Google
Google ❤️ Open Source
Google
An implementation of the BADGE batch active learning algorithm.

Batch Active learning by Diverse Gradient Embeddings (BADGE) An implementation of the BADGE batch active learning algorithm. Details are provided in o

125 Dec 24, 2022
rliable is an open-source Python library for reliable evaluation, even with a handful of runs, on reinforcement learning and machine learnings benchmarks.

Open-source library for reliable evaluation on reinforcement learning and machine learning benchmarks. See NeurIPS 2021 oral for details.

Google Research 529 Jan 01, 2023
My take on a practical implementation of Linformer for Pytorch.

Linformer Pytorch Implementation A practical implementation of the Linformer paper. This is attention with only linear complexity in n, allowing for v

Peter 349 Dec 25, 2022
High-quality single file implementation of Deep Reinforcement Learning algorithms with research-friendly features

CleanRL (Clean Implementation of RL Algorithms) CleanRL is a Deep Reinforcement Learning library that provides high-quality single-file implementation

Costa Huang 1.8k Jan 01, 2023
Algorithmic encoding of protected characteristics and its implications on disparities across subgroups

Algorithmic encoding of protected characteristics and its implications on disparities across subgroups This repository contains the code for the paper

Team MIRA - BioMedIA 15 Oct 24, 2022
DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers

DALL-Eval: Probing the Reasoning Skills and Social Biases of Text-to-Image Generative Transformers Authors: Jaemin Cho, Abhay Zala, and Mohit Bansal (

Jaemin Cho 98 Dec 15, 2022
Generating Fractals on Starknet with Cairo

StarknetFractals Generating the mandelbrot set on Starknet Current Implementation generates 1 pixel of the fractal per call(). It takes a few minutes

Orland0x 10 Jul 16, 2022
A privacy-focused, intelligent security camera system.

Self-Hosted Home Security Camera System A privacy-focused, intelligent security camera system. Features: Multi-camera support w/ minimal configuration

Scott Barnes 175 Jan 01, 2023
HistoKT: Cross Knowledge Transfer in Computational Pathology

HistoKT: Cross Knowledge Transfer in Computational Pathology Exciting News! HistoKT has been accepted to ICASSP 2022. HistoKT: Cross Knowledge Transfe

Mahdi S. Hosseini 5 Jan 05, 2023
PyTorch implementation of MoCo: Momentum Contrast for Unsupervised Visual Representation Learning

MoCo: Momentum Contrast for Unsupervised Visual Representation Learning This is a PyTorch implementation of the MoCo paper: @Article{he2019moco, aut

Meta Research 3.7k Jan 02, 2023
CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
DeepLearning Anomalies Detection with Bluetooth Sensor Data

Final Year Project. Constructing models to create offline anomalies detection using Travel Time Data collected from Bluetooth sensors along the route.

1 Jan 10, 2022
A large-scale face dataset for face parsing, recognition, generation and editing.

CelebAMask-HQ [Paper] [Demo] CelebAMask-HQ is a large-scale face image dataset that has 30,000 high-resolution face images selected from the CelebA da

switchnorm 1.7k Dec 26, 2022
AIR^2 for Interaction Prediction

This is the repository for AIR^2 for Interaction Prediction. Explanation of the solution: Video: link License AIR is released under the Apache 2.0 lic

21 Sep 27, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
Supervised Contrastive Learning for Downstream Optimized Sequence Representations

SupCL-Seq 📖 Supervised Contrastive Learning for Downstream Optimized Sequence representations (SupCS-Seq) accepted to be published in EMNLP 2021, ext

Hooman Sedghamiz 18 Oct 21, 2022
Unpaired Caricature Generation with Multiple Exaggerations

CariMe-pytorch The official pytorch implementation of the paper "CariMe: Unpaired Caricature Generation with Multiple Exaggerations" CariMe: Unpaired

Gu Zheng 37 Dec 30, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
High accurate tool for automatic faces detection with landmarks

faces_detanator High accurate tool for automatic faces detection with landmarks. The library is based on public detectors with high accuracy (TinaFace

Ihar 7 May 10, 2022