MonoScene: Monocular 3D Semantic Scene Completion

Overview

MonoScene: Monocular 3D Semantic Scene Completion

MonoScene: Monocular 3D Semantic Scene Completion] [arXiv + supp] | [Project page]
Anh-Quan Cao, Raoul de Charette
Inria, Paris, France

If you find this work useful, please cite our paper:

@misc{cao2021monoscene,
      title={MonoScene: Monocular 3D Semantic Scene Completion}, 
      author={Anh-Quan Cao and Raoul de Charette},
      year={2021},
      eprint={2112.00726},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Code and models will be released soon. Please watch this repo for updates.

Demo

SemanticKITTI KITTI-360
(Trained on SemanticKITTI)

NYUv2

Comments
  • TypeError: 'int' object is not subscriptable

    TypeError: 'int' object is not subscriptable

    (monoscene) [email protected]:~/workplace/MonoScene$ python monoscene/scripts/train_monoscene.py dataset=kitti enable_log=true kitti_root=$KITTI_ROOT kitti_preprocess_root=$KITTI_PREPROCESS kitti_logdir=$KITTI_LOG n_gpus=2 batch_size=2 ^[[Dexp_kitti_1_FrusSize_8_nRelations4_WD0.0001_lr0.0001_CEssc_geoScalLoss_semScalLoss_fpLoss_CERel_3DCRP_Proj_2_4_8 n_relations (32, 32, 4) Traceback (most recent call last): File "monoscene/scripts/train_monoscene.py", line 118, in main class_weights=class_weights, File "/home/ruidong/workplace/MonoScene/monoscene/models/monoscene.py", line 80, in init context_prior=context_prior, File "/home/ruidong/workplace/MonoScene/monoscene/models/unet3d_kitti.py", line 62, in init self.feature * 4, self.feature * 4, size_l3, bn_momentum=bn_momentum File "/home/ruidong/workplace/MonoScene/monoscene/models/CRP3D.py", line 15, in init self.flatten_size = size[0] * size[1] * size[2] TypeError: 'int' object is not subscriptable

    Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.

    opened by DipDipPotatoChips 21
  • Questions about cross-entropy loss

    Questions about cross-entropy loss

    Dear authors, thanks for your great works! In your paper, you say that "the losses are computed only where y is defined". I wonder if this means you do not add supervision on non-occupied voxels and only use multi-class classification loss on occupied voxels ? If this holds true, why the model can identify which voxels are occupied ?

    opened by weiyithu 13
  • about test

    about test

    FileNotFoundError: [Errno 2] No such file or directory: '/home/ruidong/workplace/MonoScene/trained_models/monoscene_kitti.ckpt'

    the last printing of trainning is: Epoch 29: 100%|\u2588\u2588\u2588\u2588\u2588\u2588\u2588\u2588| 2325/2325 [1:06:52<00:00, 1.73s/it, loss=3.89, v_num=]

    opened by DipDipPotatoChips 13
  • Cuda out of memory

    Cuda out of memory

    Dear author, you said that Use smaller 2D backbone by chaning the basemodel_name and num_features The pretrained model name is here. You can try the efficientnet B5 can reduces the memory, I want to know the B5 weight and the value of num_features?

    opened by lulianLiu 12
  • Pretrained models on other dataset: NuScenes

    Pretrained models on other dataset: NuScenes

    Hi @anhquancao,

    Thanks so much for your paper and your implementation. Do you have your pretrained model on the NuScenes? If yes, could you share it? The reason is that I want to build upon your work on the NuScenes dataset but there exists a large domain gap between the two (SemanticKITTI and NuScenes) so the pretrained on SemanticKITTI works does not well on the NuScenes.

    Thanks!

    opened by ducminhkhoi 11
  • failed to run test

    failed to run test

    When I try to run this script, it crashed without giving any information: python monoscene/scripts/generate_output.py +output_path=$MONOSCENE_OUTPUT dataset=kitti_360 +kitti_360_root=$KITTI_360_ROOT +kitti_360_sequence=2013_05_28_drive_0028_sync n_gpus=1 batch_size=1

    image

    Any suggestion will be much appreciated.

    opened by ChiyuanFeng 9
  • cannot find calib

    cannot find calib

    PS F:\Studying\CY-Workspace\MonoScene-master> python monoscene/scripts/eval_monoscene.py dataset=kitti kitti_root=$KITTI_ROOT kitti_preprocess_root=$KITTI_PREPROCESS n_gpus=1 batch_size= 1 GPU available: True, used: True TPU available: False, using: 0 TPU cores IPU available: False, using: 0 IPUs n_relations 4 Using cache found in C:\Users\DELL/.cache\torch\hub\rwightman_gen-efficientnet-pytorch_master Loading base model ()...Done. Removing last two layers (global_pool & classifier). Building Encoder-Decoder model..Done. Traceback (most recent call last): File "monoscene/scripts/eval_monoscene.py", line 71, in main data_module.setup() File "F:\anaconda\envs\monoscene\lib\site-packages\pytorch_lightning\core\datamodule.py", line 440, in wrapped_fn fn(*args, **kwargs) File "F:\Studying\CY-Workspace\MonoScene-master\monoscene\scripts/../..\monoscene\data\semantic_kitti\kitti_dm.py", line 34, in setup color_jitter=(0.4, 0.4, 0.4), File "F:\Studying\CY-Workspace\MonoScene-master\monoscene\scripts/../..\monoscene\data\semantic_kitti\kitti_dataset.py", line 60, in init os.path.join(self.root, "dataset", "sequences", sequence, "calib.txt") File "F:\Studying\CY-Workspace\MonoScene-master\monoscene\scripts/../..\monoscene\data\semantic_kitti\kitti_dataset.py", line 193, in read_calib with open(calib_path, "r") as f: FileNotFoundError: [Errno 2] No such file or directory: 'dataset\sequences\00\calib.txt'

    opened by cyaccpect 9
  • about visualization

    about visualization

    (monoscene) [email protected]:~/workplace/MonoScene$ python monoscene/scripts/visualization/kitti_vis_pred.py +file=/home/ruidong/workplace/MonoScene/outputs/kitti/08/000000.pkl +dataset=kitt monoscene/scripts/visualization/kitti_vis_pred.py:23: DeprecationWarning: np.float is a deprecated alias for the builtin float. To silence this warning, use float by itself. Doing this will not modify any behavior and is safe. If you specifically wanted the numpy scalar type, use np.float64 here. Deprecated in NumPy 1.20; for more details and guidance: https://numpy.org/devdocs/release/1.20.0-notes.html#deprecations coords_grid = coords_grid.astype(np.float) Traceback (most recent call last): File "monoscene/scripts/visualization/kitti_vis_pred.py", line 196, in main d=7, File "monoscene/scripts/visualization/kitti_vis_pred.py", line 75, in draw grid_coords = np.vstack([grid_coords.T, voxels.reshape(-1)]).T AttributeError: 'tuple' object has no attribute 'T'

    Set the environment variable HYDRA_FULL_ERROR=1 for a complete stack trace.

    opened by DipDipPotatoChips 9
  • Porting the work of this paper to a new dataset

    Porting the work of this paper to a new dataset

    Hello author, first of all thank you for your great work. I want to directly apply your work to the nuscenes dataset, is it possible? Does the nuscenes dataset need point cloud data to assist in generating voxel data?

    opened by yukaizhou 8
  • Can you help me in another paper?

    Can you help me in another paper?

    Hello! Last year, when you reproduced the code SISC(https://github.com/OPEN-AIR-SUN/SISC), you found a bug and solve it! Now, I get the same problem too,can you tell me how to solve it ! Thank you very much!

    opened by WkangLiu 8
  • ImportError: cannot import name 'get_num_classes' from 'torchmetrics.utilities.data'

    ImportError: cannot import name 'get_num_classes' from 'torchmetrics.utilities.data'

    there is something wrong with my machine and I reinstall my ubuntu. I re-gitclone the code and just keep the data.but when I follow the readme to do installation,it print:

    (monoscene) [email protected]:~/workplace/MonoScene$ pip install -e ./ Obtaining file:///home/potato/workplace/MonoScene Installing collected packages: monoscene Running setup.py develop for monoscene Successfully installed monoscene-0.0.0 (monoscene) [email protected]:~/workplace/MonoScene$ python monoscene/scripts/train_monoscene.py dataset=kitti enable_log=true kitti_root=$KITTI_ROOT kitti_preprocess_root=$KITTI_PREPROCESS kitti_logdir=$KITTI_LOG n_gpus=1 batch_size=1 sem_scal_loss=False Traceback (most recent call last): File "monoscene/scripts/train_monoscene.py", line 1, in from monoscene.data.semantic_kitti.kitti_dm import KittiDataModule File "/home/potato/workplace/MonoScene/monoscene/data/semantic_kitti/kitti_dm.py", line 3, in import pytorch_lightning as pl File "/home/potato/anaconda3/envs/monoscene/lib/python3.7/site-packages/pytorch_lightning/init.py", line 20, in from pytorch_lightning import metrics # noqa: E402 File "/home/potato/anaconda3/envs/monoscene/lib/python3.7/site-packages/pytorch_lightning/metrics/init.py", line 15, in from pytorch_lightning.metrics.classification import ( # noqa: F401 File "/home/potato/anaconda3/envs/monoscene/lib/python3.7/site-packages/pytorch_lightning/metrics/classification/init.py", line 14, in from pytorch_lightning.metrics.classification.accuracy import Accuracy # noqa: F401 File "/home/potato/anaconda3/envs/monoscene/lib/python3.7/site-packages/pytorch_lightning/metrics/classification/accuracy.py", line 18, in from pytorch_lightning.metrics.utils import deprecated_metrics, void File "/home/potato/anaconda3/envs/monoscene/lib/python3.7/site-packages/pytorch_lightning/metrics/utils.py", line 22, in from torchmetrics.utilities.data import get_num_classes as _get_num_classes ImportError: cannot import name 'get_num_classes' from 'torchmetrics.utilities.data' (/home/potato/anaconda3/envs/monoscene/lib/python3.7/site-packages/torchmetrics/utilities/data.py)

    opened by DipDipPotatoChips 7
Releases(v0.1)
Owner
Codes from Computer Vision group of RITS Team, Inria
Chess reinforcement learning by AlphaGo Zero methods.

About Chess reinforcement learning by AlphaGo Zero methods. This project is based on these main resources: DeepMind's Oct 19th publication: Mastering

Samuel 2k Dec 29, 2022
Accelerating BERT Inference for Sequence Labeling via Early-Exit

Sequence-Labeling-Early-Exit Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit Requirement: Please refer to re

李孝男 23 Oct 14, 2022
This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting

1 MAGNN This repo is the official implementation for Multi-Scale Adaptive Graph Neural Network for Multivariate Time Series Forecasting. 1.1 The frame

SZJ 12 Nov 08, 2022
基于PaddleClas实现垃圾分类,并转换为inference格式用PaddleHub服务端部署

百度网盘链接及提取码: 链接:https://pan.baidu.com/s/1HKpgakNx1hNlOuZJuW6T1w 提取码:wylx 一个垃圾分类项目带你玩转飞桨多个产品(1) 基于PaddleClas实现垃圾分类,导出inference模型并利用PaddleHub Serving进行服务

thomas-yanxin 22 Jul 12, 2022
Library for machine learning stacking generalization.

stacked_generalization Implemented machine learning *stacking technic[1]* as handy library in Python. Feature weighted linear stacking is also availab

114 Jul 19, 2022
Content shared at DS-OX Meetup

Streamlit-Projects Streamlit projects available in this repo: An introduction to Streamlit presented at DS-OX (Feb 26, 2020) meetup Streamlit 101 - Ja

Arvindra 69 Dec 23, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
Heat transfer problemas solved using python

heat-transfer Heat transfer problems solved using python isolation-convection.py compares the temperature distribution on the problem as shown in the

2 Nov 14, 2021
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
Self-Supervised Pillar Motion Learning for Autonomous Driving (CVPR 2021)

Self-Supervised Pillar Motion Learning for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Self-Supervised Pillar Motion Learning for Autono

QCraft 101 Dec 05, 2022
PyTorch evaluation code for Delving Deep into the Generalization of Vision Transformers under Distribution Shifts.

Out-of-distribution Generalization Investigation on Vision Transformers This repository contains PyTorch evaluation code for Delving Deep into the Gen

Chongzhi Zhang 72 Dec 13, 2022
Torch code for our CVPR 2018 paper "Residual Dense Network for Image Super-Resolution" (Spotlight)

Residual Dense Network for Image Super-Resolution This repository is for RDN introduced in the following paper Yulun Zhang, Yapeng Tian, Yu Kong, Bine

Yulun Zhang 494 Dec 30, 2022
The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization

PRIMER The official code for PRIMER: Pyramid-based Masked Sentence Pre-training for Multi-document Summarization. PRIMER is a pre-trained model for mu

AI2 111 Dec 18, 2022
PointPillars inference with TensorRT

A project demonstrating how to use CUDA-PointPillars to deal with cloud points data from lidar.

NVIDIA AI IOT 315 Dec 31, 2022
g9.py - Torch interactive graphics

g9.py - Torch interactive graphics A Torch toy in the browser. Demo at https://srush.github.io/g9py/ This is a shameless copy of g9.js, written in Pyt

Sasha Rush 13 Nov 16, 2022
Implement of "Training deep neural networks via direct loss minimization" in PyTorch for 0-1 loss

This is the implementation of "Training deep neural networks via direct loss minimization" published at ICML 2016 in PyTorch. The implementation targe

Cuong Nguyen 1 Jan 18, 2022
This repository gives an example on how to preprocess the data of the HECKTOR challenge

HECKTOR 2021 challenge This repository gives an example on how to preprocess the data of the HECKTOR challenge. Any other preprocessing is welcomed an

56 Dec 01, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging

ShICA Code accompanying the paper Shared Independent Component Analysis for Multi-subject Neuroimaging Install Move into the ShICA directory cd ShICA

8 Nov 07, 2022