This repo in the implementation of EMNLP'21 paper "SPARQLing Database Queries from Intermediate Question Decompositions" by Irina Saparina, Anton Osokin

Overview

SPARQLing Database Queries from Intermediate Question Decompositions

This repo is the implementation of the following paper:

SPARQLing Database Queries from Intermediate Question Decompositions
Irina Saparina and Anton Osokin
To appear in proceedings of EMNLP'21

License

This software is released under the MIT license, which means that you can use the code in any way you want.

Dependencies

Conda env with pytorch 1.9

Create conda env with pytorch 1.9 and many other packages upgraded: conda_env_with_pytorch1.9.yaml:

conda env create -n env-torch1.9 -f conda_env_with_pytorch1.9.yaml
conda activate env-torch1.9

Download some nltk resourses, Bert and GraPPa:

python -c "import nltk; nltk.download('stopwords'); nltk.download('punkt')"
python -c "from transformers import AutoModel; AutoModel.from_pretrained('bert-large-uncased-whole-word-masking'); AutoModel.from_pretrained('Salesforce/grappa_large_jnt')"

mkdir -p third_party && \
cd third_party && \
curl https://nlp.stanford.edu/software/stanford-corenlp-full-2018-10-05.zip | jar xv

Data

We currently provide both Spider and Break inside our repos. Note that datasets differ from original ones as we fixed some annotation errors. Download databases:

bash ./utils/wget_gdrive.sh spider_temp.zip 11icoH_EA-NYb0OrPTdehRWm_d7-DIzWX
unzip spider_temp.zip -d spider_temp
cp -r spider_temp/spider/database ./data/spider
rm -rf spider_temp/
python ./qdmr2sparql/fix_databases.py --spider_path ./data/spider

To reproduce our annotation procedure see qdmr2sparql/README.md.

For testing qdmr2sparql translator run qdmr2sparql/test_qdmr2sparql.py

Experiments

Every experiment has its own config file in text2qdmr/configs/experiments. The pipeline of working with any model version or dataset is:

python run_text2qdmr.py preprocess experiment_config_file  # preprocess the data
python run_text2qdmr.py train experiment_config_file       # train a model
python run_text2qdmr.py eval experiment_config_file        # evaluate the results

# multiple GPUs on one machine:
export NGPUS=4 # set $NGPUS manually
python -m torch.distributed.launch --nproc_per_node=$NGPUS --use_env --master_port `./utils/get_free_port.sh`  run_text2qdmr.py train experiment_config_file

Note that preprocessing and evaluation use execution and take some time. To speed up the evaluation, you can install Virtuoso server (see qdmr2sparql/README_Virtuoso.md).

Checkpoints and samples

The dev and test examples of model output are model_samples/.

Checkpoints of our best models:

Model name Dev Test Link
grappa-aug 80.4 62.0 https://www.dropbox.com/s/t9z1uwvohuakig8/grappa-aug_model_checkpoint-00072000?dl=0
grappa-full_break 74.6 62.6 https://www.dropbox.com/s/bf6vyhtep4knmm7/full-break-grappa_model_checkpoint-00075000?dl=0

Acknowledgements

Text2qdmr module is based on RAT-SQL code, the implementation of ACL'20 paper "RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL Parsers" by Wang et al.

Spider dataset was proposed by Yi et al. in EMNLP'18 paper "Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task".

Break dataset was proposed by Wolfson et al. in TACL paper "Break It Down: A Question Understanding Benchmark".

GenshinMapAutoMarkTools - Tools To add/delete/refresh resources mark in Genshin Impact Map

使用说明 适配 windows7以上 64位 原神1920x1080窗口(其他分辨率后续适配) 待更新渊下宫 English version is to be

Zero_Circle 209 Dec 28, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
Neural Factorization of Shape and Reflectance Under An Unknown Illumination

NeRFactor [Paper] [Video] [Project] This is the authors' code release for: NeRFactor: Neural Factorization of Shape and Reflectance Under an Unknown I

Google 283 Jan 04, 2023
Blender add-on: Add to Cameras menu: View → Camera, View → Add Camera, Camera → View, Previous Camera, Next Camera

Blender add-on: Camera additions In 3D view, it adds these actions to the View|Cameras menu: View → Camera : set the current camera to the 3D view Vie

German Bauer 11 Feb 08, 2022
TalkingHead-1KH is a talking-head dataset consisting of YouTube videos

TalkingHead-1KH Dataset TalkingHead-1KH is a talking-head dataset consisting of YouTube videos, originally created as a benchmark for face-vid2vid: On

173 Dec 29, 2022
existing and custom freqtrade strategies supporting the new hyperstrategy format.

freqtrade-strategies Description Existing and self-developed strategies, rewritten to support the new HyperStrategy format from the freqtrade-develop

39 Aug 20, 2021
Official implementation of "MetaSDF: Meta-learning Signed Distance Functions"

MetaSDF: Meta-learning Signed Distance Functions Project Page | Paper | Data Vincent Sitzmann*, Eric Ryan Chan*, Richard Tucker, Noah Snavely Gordon W

Vincent Sitzmann 100 Jan 01, 2023
Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN)

Multi-Agent Reinforcement Learning for Active Voltage Control on Power Distribution Networks (MAPDN) This is the implementation of the paper Multi-Age

Future Power Networks 83 Jan 06, 2023
Public Code for NIPS submission SimiGrad: Fine-Grained Adaptive Batching for Large ScaleTraining using Gradient Similarity Measurement

Public code for NIPS submission "SimiGrad: Fine-Grained Adaptive Batching for Large Scale Training using Gradient Similarity Measurement" This repo co

Heyang Qin 0 Oct 13, 2021
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
Chinese Advertisement Board Identification(Pytorch)

Chinese-Advertisement-Board-Identification. We use YoloV5 to extract the ROI of the location of the chinese word. Next, we sort the bounding box and recognize every chinese words which we extracted.

Li-Wei Hsiao 12 Jul 21, 2022
Algebraic effect handlers in Python

PyEffect: Algebraic effects in Python What IDK. Usage effects.handle(operation, handlers=None) effects.set_handler(effect, handler) Supported effects

Greg Werbin 5 Dec 27, 2021
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Pmapper is a super-resolution and deconvolution toolkit for python 3.6+

pmapper pmapper is a super-resolution and deconvolution toolkit for python 3.6+. PMAP stands for Poisson Maximum A-Posteriori, a highly flexible and a

NASA Jet Propulsion Laboratory 8 Nov 06, 2022
realsense d400 -> jpg + csv

Realsense-capture realsense d400 - jpg + csv Requirements RealSense sdk : Installation Python3 pyrealsense2 (RealSense SDK) Numpy OpenCV Tkinter Run

Ar-Ray 2 Mar 22, 2022
A novel benchmark dataset for Monocular Layout prediction

AutoLay AutoLay: Benchmarking Monocular Layout Estimation Kaustubh Mani, N. Sai Shankar, J. Krishna Murthy, and K. Madhava Krishna Abstract In this pa

Kaustubh Mani 39 Apr 26, 2022
Rate-limit-semaphore - Semaphore implementation with rate limit restriction for async-style (any core)

Rate Limit Semaphore Rate limit semaphore for async-style (any core) There are t

Yan Kurbatov 4 Jun 21, 2022