MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

Related tags

Deep LearningMOpt-AFL
Overview

MOpt-AFL

1. Description

MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal selection probability distribution of operators with respect to fuzzing effectiveness. More details can be found in the technical report. The installation of MOpt-AFL is the same as AFL's.

2. Cite Information

Chenyang Lyu, Shouling Ji, Chao Zhang, Yuwei Li, Wei-Han Lee, Yu Song and Raheem Beyah, MOPT: Optimized Mutation Scheduling for Fuzzers, USENIX Security 2019.

3. Seed Sets

We open source all the seed sets used in the paper "MOPT: Optimized Mutation Scheduling for Fuzzers".

4. Experiment Results

The experiment results can be found in https://drive.google.com/drive/folders/184GOzkZGls1H2NuLuUfSp9gfqp1E2-lL?usp=sharing. We only open source the crash files since the space is limited.

5. Technical Report

MOpt_TechReport.pdf is the technical report of the paper "MOPT: Optimized Mutation Scheduling for Fuzzers", which contains more deatails.

6. Parameter Introduction

Most important, you must add the parameter -L (e.g., -L 0) to launch the MOpt scheme.


-L controls the time to move on to the pacemaker fuzzing mode.
-L t: when MOpt-AFL finishes the mutation of one input, if it has not discovered any new unique crash or path for more than t min, MOpt-AFL will enter the pacemaker fuzzing mode.


Setting 0 will enter the pacemaker fuzzing mode at first, which is recommended in a short time-scale evaluation (like 2 hours).
For instance, it may take three or four days for MOpt-AFL to enter the pacemaker fuzzing mode when -L 30.

Hey guys, I realize that most experiments may last no longer than 24 hours. You may have trouble selecting a suitable value of 'L' without testing. So I modify the code in order to employ '-L 1' as the default setting. This means you do not have to add the parameter 'L' to launch the MOpt scheme. If you wish, provide a parameter '-L t' in the cmd can adjust the time when MOpt will enter the pacemaker fuzzing mode as aforementioned. Whether MOpt enters the pacemaker fuzzing mode has a great influence on the fuzzing performance in some cases as shown in our paper.
'-L 1' may not be the best choice but will be acceptable in most cases. I may provide several experiment results to show this situation.

The unique paths found by different fuzzing settings in 24 hours.
Fuzzing setting infotocap @@ -o /dev/null objdump -S @@ sqlite3
MOpt -L 0 3629 5106 10498
MOpt -L 1 3983 5499 9975
MOpt -L 5 3772 2512 9332
MOpt -L 10 4062 4741 9465
MOpt -L 30 3162 1991 6337
AFL 1821 1099 4949

Other important parameters can be found in afl-fuzz.c, for instance,
swarm_num: the number of the PSO swarms used in the fuzzing process.
period_pilot: how many times MOpt-AFL will execute the target program in the pilot fuzzing module, then it will enter the core fuzzing module.
period_core: how many times MOpt-AFL will execute the target program in the core fuzzing module, then it will enter the PSO updating module.
limit_time_bound: control how many interesting test cases need to be found before MOpt-AFL quits the pacemaker fuzzing mode and reuses the deterministic stage. 0 < limit_time_bound < 1, MOpt-AFL-tmp. limit_time_bound >= 1, MOpt-AFL-ever.

Having fun with MOpt-AFL.

Citation:

@inproceedings {236282,
author = {Chenyang Lyu and Shouling Ji and Chao Zhang and Yuwei Li and Wei-Han Lee and Yu Song and Raheem Beyah},
title = {{MOPT}: Optimized Mutation Scheduling for Fuzzers},
booktitle = {28th {USENIX} Security Symposium ({USENIX} Security 19)},
year = {2019},
isbn = {978-1-939133-06-9},
address = {Santa Clara, CA},
pages = {1949--1966},
url = {https://www.usenix.org/conference/usenixsecurity19/presentation/lyu},
publisher = {{USENIX} Association},
month = aug,
}
領域を指定し、キーを入力することで画像を保存するツールです。クラス分類用のデータセット作成を想定しています。

image-capture-class-annotation 領域を指定し、キーを入力することで画像を保存するツールです。 クラス分類用のデータセット作成を想定しています。 Requirement OpenCV 3.4.2 or later Usage 実行方法は以下です。 起動後はマウスクリック4

KazuhitoTakahashi 5 May 28, 2021
GANmouflage: 3D Object Nondetection with Texture Fields

GANmouflage: 3D Object Nondetection with Texture Fields Rui Guo1 Jasmine Collins

29 Aug 10, 2022
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
Tensorforce: a TensorFlow library for applied reinforcement learning

Tensorforce: a TensorFlow library for applied reinforcement learning Introduction Tensorforce is an open-source deep reinforcement learning framework,

Tensorforce 3.2k Jan 02, 2023
This is a custom made virus code in python, using tkinter module.

skeleterrorBetaV0.1-Virus-code This is a custom made virus code in python, using tkinter module. This virus is not harmful to the computer, it only ma

AR 0 Nov 21, 2022
Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation

Implicit Internal Video Inpainting Implementation for our ICCV2021 paper: Internal Video Inpainting by Implicit Long-range Propagation paper | project

202 Dec 30, 2022
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
10x faster matrix and vector operations

Bolt is an algorithm for compressing vectors of real-valued data and running mathematical operations directly on the compressed representations. If yo

2.3k Jan 09, 2023
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
A python program to hack instagram

hackinsta a program to hack instagram Yokoback_(instahack) is the file to open, you need libraries write on import. You run that file in the same fold

2 Jan 22, 2022
Official code for "Decoupling Zero-Shot Semantic Segmentation"

Decoupling Zero-Shot Semantic Segmentation This is the official code for the arxiv. ZegFormer is the first framework that decouple the zero-shot seman

Jian Ding 108 Dec 30, 2022
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
PyTorch implementation of Glow

glow-pytorch PyTorch implementation of Glow, Generative Flow with Invertible 1x1 Convolutions (https://arxiv.org/abs/1807.03039) Usage: python train.p

Kim Seonghyeon 433 Dec 27, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Competitive Programming Club, Clinify's Official repository for CP problems hosting by club members.

Clinify-CPC_Programs This repository holds the record of the competitive programming club where the competitive coding aspirants are thriving hard and

Clinify Open Sauce 4 Aug 22, 2022
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with

12 Sep 08, 2022
This repo is the code release of EMNLP 2021 conference paper "Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories".

Connect-the-Dots: Bridging Semantics between Words and Definitions via Aligning Word Sense Inventories This repo is the code release of EMNLP 2021 con

12 Nov 22, 2022
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

Ming 74 Dec 28, 2022
A collection of educational notebooks on multi-view geometry and computer vision.

Multiview notebooks This is a collection of educational notebooks on multi-view geometry and computer vision. Subjects covered in these notebooks incl

Max 65 Dec 09, 2022
PyTorch implementations of deep reinforcement learning algorithms and environments

Deep Reinforcement Learning Algorithms with PyTorch This repository contains PyTorch implementations of deep reinforcement learning algorithms and env

Petros Christodoulou 4.7k Jan 04, 2023